

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

BME

	Subject	19BM	C17 & 19MDC17- Medical Signal Proce	ssing
		UNIT-1	ADAPTIVE FILTERS	
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/E quation/Expression	Units
1.	Filter	DESIGN	In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filters are widely used in electronics and communication, in radio, television, audio recording, radar, control systems. Music synthesis, image processing, and computer graphics.	-
2.	Types of Filter	Est	 Non-linear or linear Time-variant or time-invariant Causal or non-causal Analog or digital Discrete-time or continuous- time Passive or active type of continuous-time filter Infinite impulse response (IIR) or Finite impulse response (FIR) type of discrete-time 	_
3.	Adaptive filter		• An adaptive filter is a system with a linear filter that has a	

2021-2022

means

transfer function controlled by variable parameters and a

to

adjust

those

			narameters according to an	
			optimization algorithm	
			optimization algorithm.	
4	Adaptive		An adaptive algorithm is an	
1,	algorithm	-	algorithm that changes its	-
5.	Types of adaptive	-	• Recursive Least Square (RLS)	-
	algorithm		Least Mean Square (LMS)	
6.	Applications of		Noise cancellation	
	adaptive	_	Signal prediction	_
	algorithm		Adaptive feedback cancellation	
			Echo cancellation	
7.	Filter		 Least mean squares filter 	
	implementations	_	Recursive least squares filter	_
		_	Multi-delay block frequency domain	-
			adaptive filter	
8.	Types of adaptive		The classical configurations of	
	filters	\sim	adaptive filtering are	
			System identification	
		-	Prediction	-
		_	Noise cancellation	
			Inverse modelling	
9.	Principle of	X	 Adaptive filters are self- 	
	adaptive filter		designing filters based on an	
	_		algorithm which allows the	
			filter to learn the initial input	
			statistics and to track them if	
			they are time varying.	-
			These filters estimate the deterministic	
			signal and remove the noise un-	
			correlated with the deterministic	
		DESIGN	signal. OUR FUTURE	
10.	Steepest method	hard" New York" I "Seed I "F	 A steepest descent algorithm 	
	of descent	Est	would be an algorithm which	
			follows the update rule, where	
			at each iteration, the direction	
		_	$\Delta x(k)$ is the steepest direction	_
			we can take.	_
			That is the algorithm continues its	
			search in the direction which will	
			minimize the value of function, given	
			the current point.	
11.	Limitation of		The main observation is that	
	steepest descent		the steepest descent direction	
	algorithm		can be used with a different	
		-	step size than the classical	-
			method that can sustainability	
			improve the convergence.	
			One disadvantage however is the lack	

			of monotone convergence.	
			6	
12.	Adaptive noise		♦ Adaptive noise cancelling	
	canceller		(ANC) is a technique which is	
			very effective to remove	
			additive noises from the	
		-	contaminated signals.	-
			It has been widely used in the fields or	
			telecommunication, radar, and sonar	
			signal processing.	
13.	ECG noise		 The method is based on 	
	cancellation using		cascading a zero-phase band-	
	digital filters		paper aims to remove not only	
			the power line noise pass, an	
			adaptive filter, and multi-band-	
		-	pass filter.	-
			It and its harmonics, but also to	
			remove other ECG provides an	
			efficient method for removing noise	
			from noises such as respiratory signal	
			and ECG signal.	
14.	ECG noise		Arrhythmia classers	
	cancellation		Arrhythmia detection and	
	methods		classification processes	-
			Filtering	
15.	Interference		As an alternative, we propose	
	cancellation		interference cancellation, in	
	method		which simultaneous signals are	
			modelled and decoded together	
		_	rather than treating all but one	_
		DESIGN	as random noise.	_
		DEDIGIN	This method greatly expands the	
		Ect	conditions under which overlapping	
		LSU	transmissions can be successfully	
			received, even by a single receiver	
16.	Removing power		The power line interference (50Hz)	
	line interference		from ECG signal can be removed by	
		-	adaptive filtering while its harmonics	_
			and high frequency noise can be	
			removed by implementing general	
			notch rejection filters.	
17.	Filter for eliminate		 Powerline interference (50 or 60 	
	powerline		Hz noise from mains supply)	
	interterence in		can be removed by using a	
	ECG signal	-	notch filter of 50 or 60 Hz cut-	-
			off frequency.	
			ENIG noise is a high frequency noise	
			of above 100 Hz and hence may be	

			removed by a low-pass filter of an	
10			appropriate cut-off frequency.	
18.	Causes of		 Power line interference is easily 	
	powerline		recognizable since the	
	interference ECG		interfering voltage in the ECG	
	signal		may have frequency 50Hz.	
			 The interference may be due to 	
		-	stray effect of the alternating	-
			current fields due to loops in	
			the patient's cables.	
			Other causes are loose contacts on the	
			patient's cable as well as dirty	
			electrodes.	
19.	Successive		Successive Interference Cancellation	
	interference		(SIC) is a technique used by a receiver	
	cancellation work		in a wireless data transmission that	
			allows decoding of two or more	
			packets that arrived simultaneously	-
			(in a regular system, more packets	
			arriving at the same time cause a	
			collision)	
20	Filter used to		Performance of two adaptive filters	
20.	remove the		such as normalized least mean	
	stationary		square (NIMS) adaptive filter and	
	nouverline		recursive least square (RIS) adaptive	
	powernine		filter are compared with a traditional	-
	Interference		notch filter both in time and frequency	
			domains to remove the new reling	
			interferences from the ECC sizes	
			Electron disconstitic antifactor	
21.	Artifacts		• Electrocardiographic artifacts	
	-	DECLON	are defined as	
		DESTUN	lectrocardiographic	
		Eat	alterations, not related to	-
		ESU	C cardiac electrical activity.	
			As a result of the ECG such as the	
			baseline and waves can be distorted.	
22.	Artifact in		Artifact is the name given to	
	cardiology	-	disturbances in rhythm monitoring	-
			caused by movement of the electrodes.	
23.	Remove artifacts		 To remove undesirable 	
	from ECG	-	artifacts, after creating ECG	-
			template, this signal was low	
24.	Effect on motion		 Motion artifacts are related to 	
	artifact		cardiac motion which are	
			caused by cardiac pulmonary	
		-	or body motion and can cause	-
			blurring or double images.	
			Fast CTA scanners having more X-ray	

			sources can reduce the motions artifacts since the patient has less time to move during the image acquisition	
25	Types of motion artifact	-	 Fever (rigors) Hypothermia (shivering) Cardiopulmonary resuscitation (chest compressions) A non-compliant, mobile, talkative patient (the most common cause) 	-
	UNIT -	2 DATA C	OMPRESSION TECHNIQUES	
26	Data compression	-	 Process of encoding, restructuring on otherwise modifying data in order to reduce its size. 	-
27	Types of data compression	~	 Lossy compression Lossless compression 	-
28	Lossy data compression	-	The size of the file is reduced by eliminating data in the file.	-
29	Lossless data compression	\langle	Does not lose any data in the compression process, whereas the file size is compressed.	-
30	Example of lossy data compression		JPEG imageMPEG videoMP3 audio formats	-
31	Example of lossless data compression	DESIGN	 Executable programmes Text documents Source code (PNG, GIF, LZ77) 	-
32	Importance of data compression		It can dramatically decrease the amount of storage a file takes up.	-
33	Effect of data compression	-	Compressing data in a table space significantly reduces the amount of disk space that is needed to store data. Helps improve buffer pool performance.	-
34	Data compression techniques	_	 Image compression Data compression Vector compression Wavelet compression Compression algorithm Compression ratio Lossless compression 	_

			 Lossy compression 	
35	Examples of compression	-	 Bridge Hydraulic process Spring Shoe sole Bicycle pump Sponge Plush toys Air suspension system 	-
36	Data compression uses	_	 Audio compression Video compression 	_
37	Lossless data compression techniques		 a) Run length encoding (RLE) b) Lempel Ziv-Wetch (LZW) c) Huffman coding d) Arithmetic coding 	_
38	Lossy data compression techniques	$\langle \rangle$	 Transform coding Discrete cosine transform (DCT) Discrete wavelet transform (DWT) 	_
39	Compression ratio		The ratio of the number of bits required to represent the data before compression to the number of bits required to represent the data after compression.	_
40	Huffman coding	Est	This handless data compression of ASC11 characters. It constructs a full binary tree for various symbols after computing the probability of each symbol and place it in descending order.	-
41	ECG	-	An Electrocardiogram is a recording of electrical activity of heart over the time produced by an electrocardiograph.	-
42	Turning point algorithm	-	It was developed to reduce the sampling frequency of an ECG signal from 200 to 100 Hz.	-

43	ECG uses	_	It displays the voltage between pairs of three electrodes, and the muscle activity that they measure from different directions.	-
44	ECG data compression	-	The first class, significance point extraction, includes the turning point algorithm, AZTEC and Fan algorithm.	-
45	Uses of turning point algorithm	-	TP algorithm provides a way to reduce the effective sampling rate by half to 100sps by selectively saving important signal points.	_
46	Steps of turning point algorithm		 Acquire the ECG signal Take the first there samples and check for the condition (x1-x0) * (x2-x1)<0 or (x1-x0) * (x2-x1)>0 If the above condition -1 is correct then x1 is stored else x2 is stored. Reconstructing the signal 	_
47	Requirements of TP		i. Acquisition of ECG signals ii. MATLAB software iii. PC configuration with 2GB RAM, 320GB HARD DISK, 2GHZ Intel processor	_
48	Acquisition of ECG signal	Est	The normal ECG signals are acquired using POLYPARA system.	-
49	MATLAB software	-	MATLAB version R2009b is used for implementing the programs.	_
50	Limitations of TP algorithm	-	TP algorithm is limited to compression ratio of 4:1. Include not equally spaced sampling and widening of waves.	-
	UNIT -3	CARDIO L	OGICAL SIGNAL PROCESSING	
51	Signal	_	A signal is a function that conveys information about a phenomenon. In electronics and telecommunications, it refers to any time varying voltage,	-

			current, or electromagnetic wave that	
			carries information. A signal may also	
			be defined as an observable change in	
			a quality such as quantity.	
52	Signal processing		• Signal processing is an	
			electrical engineering subfield	
		_	that focuses on analysing,	-
			modifying, and synthesizing	
			signals such as sound, images,	
			and scientific measurements.	
53	Cardio-logical		Cardiac signals reflect the	
	signal		function of the autonomic	
			nervous system (ANS) and	
		_	have previously been	_
			associated with a range of self-	
			regulatory behaviors such as	
			emotion regulation and	
			memory recall.	
54	ECG		An electrocardiogram (ECG) is a	
			simple test that can be used to check	
			your heart's rhythm and electrical	
		/	activity. Sensors attached to the skin	-
			are used to detect the electrical signals	
			produced by your heart each time it	
			beats.	
55	ECG Parameters		The ECG parameters, such as	
			fragmented QRS (fQRS), heart rate	
			variability (HRV), T peak-T end	
			(TpTe), heart rate turbulence (HRT)	-
			and T wave alternans (TWA) have	
		DESIGN	predictive value for the arrhythmic	
		VESTON	events	
56	ECG Parameters	Ect	Standard ECG paper allows an	
	Estimation	LSU	approximate estimation of the heart	
			rate (HR) from an ECG recording.	
			Each second of time is represented by	
		-	250 mm (5 large squares) along the	-
			horizontal axis. So if the number of	
			large squares between each QRS	
			complex is: 5 – the HR is 60 beats per	
			minute.	
57	ECG QRS detection		QRS detection is a preliminary step for	
			detecting the heartbeat for the	
		-	subsequent rhythm classification, so a	-
			high QKS detection rate method is the	
			most significant part of the ECG	
			analysis algorithm	

58	QRS detection		The Shannon energy envelope,	
	techniques	-	wavelet transform, adaptive	-
			threshold, and adaptive filter	
59	R-R Interval		Normal ECG values for waves and	
			intervals are as follows: RR interval:	
		-	0.6-1.2 seconds. P wave: 80	-
			milliseconds. PK interval: 120-200	
			milliseconds.	
60	Estimation of R-R		It can be estimated by counting the	
60	interval		number of QKS complexes in a 10	
			second period and multiplying that by	
		-	of or by counting the pulse for to	-
			one PR interval measures 20 mm then	
			HR is $1500 / 20 = 75$ BPM	
61	ST Segment			
			The ST segment is the flat, isoelectric	
			section of the ECG between the end of	
			the S wave (the J point) and the	
		-	beginning of the I wave. The SI	-
		_	Segment represents the interval	
			between ventricular depolarization	
			and repolarization	
62	Inclination		Inclination is defined as a tendency	
			towards something, such as a behavior	
			or a habit. An example of an	
			inclination is the tendency a mother	-
			has to protect a child The act of	
			inclining or the state of being inclined;	
			a bend or tilt. The inclination of the	
		DESIGN	child's head suggested sleep.	
63	ST elevation	DESTUN	ST elevation refers to a finding on an	
		Fet	electrocardiogram wherein the trace in	-
		LOU	the S1 segment is abnormally high	
(A	Llogut about an		above the baseline.	
64	neart rnythm		in a typical neart rhythm, a tiny	
			out an electrical signal. The signal than	
			travels through the strip to the	
		-	atrioventricular (ΔV) node and inte	-
			the ventricles causing them to	
			contract and nump blood	
65	Rhythm analysis		The rhythm is best analyzed by	
			looking at a rhythm strip. On a 12 lead	
		-	ECG this is usually a 10 second	-
			recording from Lead II.	
66	Arrythmia		Improper beating of the heart,	
		-	whether irregular, too fast or too slow.	-

			Cardiac arrhythmia occurs when electrical impulses in the heart don't work properly.	
67	Arrythmia analysis	-	The most common test used to diagnose an arrhythmia is an electrocardiogram (EKG or ECG). Your doctor will run other tests as needed.	-
68	Arrythmia analysis monitoring	-	Arrhythmia analysis is available with most modern ECG monitoring equipment. Arrhythmias, particularly premature ventricular beats and ventricular tachycardia, can occur during surgery in children with or without heart disease	-
69	ECG Recording		Electrocardiography is the process of producing an electrocardiogram. It is a graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin.	-
70	ECG Waves		The waves on an ECG include the P wave, Q wave, R wave, S wave, T wave and U wave. Interval: The time between two specific ECG events. The intervals commonly measured on an ECG include the PR interval, QRS interval (also called QRS duration), QT interval and RR interval	_
71	ECG Artifacts	DESIGN ESt	Electrocardiograph (EKG) artifacts are defined as EKG abnormalities, which are a measurement of cardiac potentials on the body surface and are not related to electrical activity of the heart.	-
72	ECG Components	-	The main components of an EKG wave include the P wave, PR segment, QRS complex, ST segment, T wave, and TP segment.	-
73	ECG Process	_	An electrocardiogram (ECG or EKG) records the electrical signal from your heart to check for different heart conditions. Electrodes are placed on your chest to record your heart's electrical signals, which cause your heart to beat. The signals are shown as waves on an attached computer monitor or printer	-

74	Normal ECG Recording ECG Recorder	-	The normal range of the ECG differed between men and women: heart rate 49 to 100 bpm vs. 55 to 108 bpm, P wave duration 81 to 130 ms vs. 84 to 130 ms, PR interval 119 to 210 ms vs. 120 to 202 ms, QRS duration 74 to 110 ms vs. An ECG recording machine will usually show your heart rhythm and electrical activity as a graph displayed electronically or printed on paper. For an ambulatory ECG, the ECG machine	_
			will store the information about your heart electronically, which can be accessed by a doctor when the test is complete	
	UNIT-4 NI	EUROLOGI	CAL SIGNAL PROCESSING	
76	Neurological Signal Processing		Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system.	_
77	Linear Prediction Theory	\mathbf{k}	Linear prediction is a mathematical operation where future values of a discrete-time signal are estimated as a linear function of previous samples	_
78	The Autoregressive (Ar) Method	DESIGN ESt	An autoregressive (AR) model predicts future behavior based on past behavior. It's used for forecasting when there is some correlation between values in a time series and the values that precede and succeed them.	_
79	Recursive Estimation	_	With above introduced concepts state, system model, measurement and measurement model, we can now define estimation in a more formal way The practice of estimating a state recursively based only on the old state es- timate and the newly available measurement in each time is called recursive estimation.	_
80	Spectral Error Measure	-	One of these factors, spectral error, occurs when measuring a light source that has a different spectral output than the light used to calibrate the	-

			sensor.	
81	Adaptive Segmentation	_	Intensity-based classification of MR images has proven problematic, even when advanced techniques are used. This paper describes a new method called adaptive segmentation that uses knowledge of tissue intensity properties and intensity inhomogeneities to correct and segment MR images.	_
82	EEG	-	Intensity-based classification of MR images has proven problematic, even when advanced techniques are used. This paper describes a new method called adaptive segmentation that uses knowledge of tissue intensity properties and intensity inhomogeneities to correct and	-
83	EEG And It's Uses	.2	An electroencephalogram (EEG) is a test used to evaluate the electrical activity in the brain.	-
84	EEG Test Used To Diagnose		The electroencephalogram (EEG) is a medical test used to measure the electrical activity of the brain. A number of electrodes are applied to your scalp. EEG can help diagnose a number of conditions including epilepsy, sleep disorders and brain tumours	-
85	EEG	<u>Est</u>	An electroencephalogram (EEG) is a recording of brain activity. During the test, small sensors are attached to the scalp to pick up the electrical signals produced when brain cells send messages to each other.	-
86	Possible Causes of Abnormal EEG	_	Abnormal bleeding (hemorrhage) Drug or alcohol abuse Head injury Migraines(in some cases)	-
87	Abnormal EEG Treated	_	Epilepsy may be treated with antiepileptic medications (AEDs), diet therapy and surgery. Medications are the initial treatment choice for almost all patients with multiple seizures.	-
88	EEG Transient Detection	-	EEG Transients are isolated waveforms or complexes that are	-

			distinguishable from background activity.	
89	Four Basic EEG Patterns	-	Four simple periodic rhythms recorded in the EEG are alpha, beta, delta, and theta. These rhythms are identified by frequency (Hz or cycles/sec) and amplitude	-
90	Epileptic Seizures Firstaid	-	 Stay calm and remain with the person. If they have food or fluid in their mouth, roll them onto their side immediately. Keep them safe and protect them from injury. Place something soft under their head and loosen any tight clothing. Reassure the person until they recover. 	_
91	Three Stages Of Epilepsy	->	Seizures take on many different forms and have a beginning (prodrome and aura), middle (ictal) and end (post- ictal) stage.	-
92	Epilepsy Affect Performance		This can be a problem for active people, and can contribute to low motivation to get out and exercise. Other side effects can include weight gain, blurred or double vision and poor balance and coordination which can also impact sports performance.	-
93	Epilepsy Affect Academic Performance	DESIGN Est	Children with epilepsy are at risk for having attention problems, learning disabilities, and other cognitive weaknesses, such as difficulty with memory or problem-solving skills	-
94	Epilepsy Considered Special Needs	_	The nation's special education law specifically mentions epilepsy in its definition of "Other Health Impairment," a category under which children may be found eligible for special education and related services.	-
95	Difference Between Seizure And Epilepsy	-	A seizure is a single occurrence, whereas epilepsy is a neurological condition characterized by two or more unprovoked seizures.	-
96	Outcome Of Epilepsy	-	Most individuals who develop epilepsy have a high likelihood of achieving remission.	-

97	Epilepsy Affect Memory	-	Any type of epileptic seizure could potentially affect your memory, either during or after a seizure. If you have lots of seizures, memory problems might happen more often.	-
98	Epilepsy A Serious Illness	-	Most seizures end on their own and cause minimal concerns. Yet during some seizures, people can injure themselves, develop other medical problems or life-threatening emergencies	-
99	Long Term Effects Of Epilepsy		Long lasting seizures, or status epilepticus, may also cause brain damage or death. People with epilepsy are eight times more likely than people without it to experience certain other chronic conditions, including dementia, migraine, heart disease, and depression.	_
100	Main Cause Of Epilepsy		In general, epilepsy and seizures result from abnormal circuit activity in the brain. Any event ranging from faulty wiring during brain development, brain inflammation, physical injury or infection can lead to seizure and epilepsy.	-
		UNI	T-5 SLEEP EEG	
101	Sleep EEG	-	A sleep EEG is a recording of the electrical activity of the brain while you are awake and then asleep.	-
102	Sleep EEG duration	Est	A sleep-deprived EEG takes about 1-2 hours. This test is similar to a regular EEG, as described above, except without video.	-
103	Need of sleep EEG	-	A sleep EEG is carried out while you're asleep. It may be used if a routine EEG does not give enough information, or to test for sleep disorders.	-
104	Sleep EEG detection	-	ECG analysis is useful for the detection of sleep apnea and may help to differentiate causes of cardiac arrhythmias.	-
105	Sleep EEG child test	-	An electroencephalogram (EEG) is a test that measures the electrical activity in the brain .The electrodes are not painful to your child. An EEG	-

			usually takes about 60 to 90 minutes.	
106	Data acquisition	-	Data acquisition is the process of sampling signals that measure real world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer.	-
107	Data acquisition example	_	A simple example is the process of measuring the temperature in a room as a digital value using a sensor such as a thermocouple.	-
108	Purpose of data acquisition	-	Data acquisition provides greater control over an organization's processes and faster response to failures that may occur.	-
109	Types of data acquisition	·	Data acquisition systems can be classified into the following two types. Analog Data Acquisition Systems. Digital Data Acquisition Systems.	-
110	Markov model	×	A Markov model is a stochastic model used to model pseudo-randomly changing systems.	-
111	Purpose of Marko model		Markov models can also be used to recognize patterns, make predictions and to learn the statistics of sequential data.	-
112	Markov chain	DESIGN	• A Markov chain is a mathematical process that transitions from one state to another within a finite number of possible states.	-
113	Use of Markov chain	Est	Markov chains are a fairly common, and relatively simple, way to statistically model random processes.	-
114	MCMC	-	Markov Chain Monte Carlo	-
115	Power law example	-	Double the length of a side of a cube, we multiply the volume of the cube by a factor of eight. Each of these is an example of a power law relationship.	-
116	Hypnogram model parameter	_	• The automatic computation of the hypnogram and sleep Parameters, from the data the sleep stage stacked autoencoder to constitute a 4-layer DNN	_

			model.	
117	Power law	-	A power law distribution has the form $Y = k X \alpha$, where: X and Y are variables of interest, α is the law's exponent, k is a constant.	-
118	Power law relationship	-	A power law is a relationship in which a relative change in one quantity gives rise to a proportional relative change in the other quantity, independent of the initial size of those quantities.	-
119	Power law noise	-	Power-law noise processes are models of precision oscillator noise that produce a particular slope on a spectral density plot.	_
120	Polysomnography	~	Polysomnography, also called a sleep study, is a comprehensive test used to diagnose sleep disorders.	-
121	Types of Sleep apnea		Obstructive sleep apnea, central sleep apnea, and complex sleep apnea.22- Sep-2021	-
122	Sleep apnea age	$\langle \rangle$	Sleep apnea affects many children and is most commonly found in children between 2 and 6 years of age, but can occur at any age.	-
123	Warning of sleep apnea		Awakening with a dry mouth , sore throat, Morning headache. Difficulty concentrating during the day.	-
124	Fail of sleep apnea test	Est	Patients with OSA often breathe through their mouths, which may lead to inaccurate signals.	_
125	Disadvantage of polysomnography	-	Recording is performed in an unfamiliar environment. More expensive than limited channel monitoring.	-
Faculty Prepared		Mrs.M.Biru Assistant F Departmer	unda, Professor, ht of BME.	