

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC

2021-2022

MUST KNOW CONCEPTS

BME & MDE

Subject		191	9BME08 & 19MDE07- MEDICAL OPTICS		
	UNII	-1 OPTICAL	PROPERTIES OF THE TISSUES		
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equa tion/Expression	Units	
1	Optics		Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it.	-	
2	Optical properties	N V	Absorbance, Luminosity, Scattering, Transmittance, Diffraction, Refractive index, photosensitivity, interference	-	
3	Specular reflection		Specular reflection is a type of surface reflectance often described as a mirror-like reflection of light from the surface.	-	
4	Diffuse reflection	DESIGN	It is a reflection from rough surface.	-	
5	Snell's law	Est	Snell's law, in optics, a relationship between the path taken by a ray of light in crossing the boundary or surface of separation between two contacting substances and the refractive index of each. $n1/n2 = \sin \alpha 2/\sin \alpha 1$	-	
6	Index of refraction	-	The index of refraction, n, is the ratio of the speed of light in a vacuum, c, to the speed of light in a medium,v n=C/V	-	
7	Huygens principle	-	The Huygens–Fresnel principle is a method of analysis applied to problems of wave propagation both in the far-field limit and in near-field diffraction and also reflection	-	
8	Total internal reflection	-	Total Internal Reflection (TIR) is a phenomenon in optics, by which light experiences complete reflection at an	-	

1

			interface between two media.				
9	Fiber optic	-	Fiber optics is the technology used to transmit information as pulses of light through strands of fiber made of glass or plastic over long distances	-			
10	Tissue properties	-	Refractive index, absorption, Scattering	-			
11	Population inversion	-	Generally electron tends to (ground state) what would happen if a substantial percentage of atoms could somehow be excited into an upper state having the lower state all empty. This is known as population inversion.	-			
12	Pumping source	-	Optical pumping, Element pumping, chemical reaction.	-			
13	Types of laser		Solid, liquid, gas lasers	-			
14	Uses of laser technology	-	Science, Machining, communication, security, medicine.	-			
15	Photocoagulati on can be done		1.xenon lamp 2. Laser	-			
16	Benefit of laser dentistry		Faster healing, Reduced risk of infection, less bleeding, less port.	-			
17	Measurements scheme	Y	CW (continuous wave) measurements Time resolved measurements Specifically-resolved measurements	-			
18	Laser -tissue interaction	_	Photo chemical, photo thermal, photo mechanical	-			
19	Photo chemical interactions	DESIGN	Photo dynamic therapy, hyperthemia, Photocoagulation	-			
20	Photo thermal interactions	- Est	Desiccation, Thermal injury	-			
21	Photo mechanical interactions	-	Transient stress waves, Quasi-state stress	-			
22	Speckles	-	The term speckle refers to a random granular pattern which can be observed.	-			
23	Types of speckle	-	1.Subjective speckle 2.Objective speckle	-			
24	Fiber	-	A fibre is a thin thread of a natural or artificial substance, especially one that is used to make cloth or rope.	-			
25	Types of fiber	-	1.Mode of propagation 2.Refer -index	-			
	UNIT -2 INSTRUMENTATION IN PHOTONICS						

26	Instrumentation	-	The use of tools, appliances, or apparatus in the treatment of a patient	-
27	Photonics	-	Photonics is the physical science of light waves. It deals with the science behind the generation, detection and manipulation of light.	-
28	Instrumentation for absorption	_	Instrumentation used to carry out atomic absorption spectrophotometry requires a source of light that matches the narrow bands of light that a particular atom absorbs	-
29	Scattering measurements	_	By measuring the intensity of the scattered light as a function of the scattering angle θ (= 0° for unscattered light and = 180° for light scattered directly back into the laser)	_
30	Emission measurements		Emissions measurement is the process of measuring the amount of pollutants, in a gaseous or particulate form, being emitted to the air from a specific source, such as an industrial process.	-
31	Excitation light source		High pressure arc lamp, LED, Laser.	-
32	High pressure arc lamp	$\langle \rangle$	A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light	-
33	LED		Made popular by their efficiency, range of color, and long lifespan, LED lights are ideal for numerous applications including night lighting, art lighting, and outdoor lighting.	-
34	Laser	DESIGN	A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation.	-
35	Optical filters	EST	Prism 2000 Monochromators Polarizer's	-
36	Prism	-	A polyhedron with two polygonal faces lying in parallel planes and with the other faces parallelograms	-
37	Monochromators	-	A monochromator produces a beam of light with an extremely narrow bandwidth, or light of a single color	-
38	Polarizer's	-	Polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations.	_
39	Optical detectors	-	An optical detector is a device that converts light signals into electrical signals, which can then be amplified and processed.	-

40	Optical detectors types	-	Single Channel and Multichannel detectors, Time resolved and phase resolved detection methods	_
41	Single channel detectors	-	Single-channel detectors have one active sensing element that acts as single transducer.	-
42	Multichannel detectors	-	Multichannel Analyzers (MCAs) are workhorse instruments in many scientific measurements. An MCA analyzes a stream of voltage pulses and sorts them into a histogram, or "spectrum" of number of events, versus pulse-height, which may often relate to energy or time of arrival.	-
43	Phase resolved detection	-	Phase-resolved OCT systems measure both the amplitude and phase of the light reflected from the sample as a function of depth.	-
44	Optical fibers		-Total internal reflection Optical fibers are about the diameter of a strand of human hair	-
45	Uses of optical detectors		They are absolutely necessary for various scientific implementations like fiber optic communication systems, process control, environmental sensing, safety and security, and also in defense-related applications.	_
46	Application of optical fibers	\sim	Medical. Used as light guides, imaging tools and also as lasers for surgeries	-
47	Uses of single channel &Multichannel detectors		The benefits of simultaneous multichannel detection over single-channel scanning detection are well established in analytical chemistry.	-
48	Application of scattering		The applications of light scattering are discussed, including critical phenomena, melagular weight determination air	-
49	Importance of emissions measurements	Est	Measurements of emissions can be used to understand the relative importance of a given source compared to other sources	-
50		-		-
	UNIT -3 SU	RGICAL THE	RAPEUTIC APPLICATIONS OF LASERS	
51	Medical applications of lasers	-	Lasers are commonly employed in many medical disciplines; dermatology, dentistry, cardiology, neurosurgery and eye surgery	-
52	Opthalmology	-	Ophthalmology is a branch of medicine dealing with the diagnosis, treatment and prevention of diseases of the eye and visual system.	-
53	Lasers in Opthalmology	-	There are numerous other LASERS in use in ophthalmology.They include 1.The excimer LASER used in corneal	-

			refractive surgeries such as LASIK, PRK and variants of this technology. 2.The femtosecond LASER used sometimes in corneal and cataract surgery. The cyclodiode LASER for advanced glaucoma. Dermatology is the branch of medicine	
54	Dermatology	-	dealing with the skin. It is a speciality with both medical and surgical aspects. A dermatologist is a specialist medical doctor who manages diseases related to skin, hair, nails, and some cosmetic problems.	-
55	Laser therapy used in dermatology	-	In dermatology, LLLT has beneficial effects on wrinkles, acne scars, hypertrophic scars, and healing of burns. LLLT can reduce UV damage both as a treatment and as a prophylaxis	-
56	Lasers work in dermatology		Lasers use light energy to resurface the skin. This light energy is very precise, and targets damaged skin cells while preserving healthy skin cells Along with protecting the healthy skin cells, laser skin procedures also stimulate collagen growth	-
57	Lasers used by dermatologists		Lasers that have been used to treat these conditions include argon, APTD, KTP, krypton, copper vapour, copper bromide, pulsed dye lasers and Nd:YAG. Argon (CW) causes a high degree of non-specific thermal injury and scarring and is now largely replaced by yellow-light quasi-CW and pulsed laser therapies	-
58	Dentistrry	Est	Dentistry is the diagnosis, treatment, and prevention of conditions, disorders, and diseases of the teeth, gums, mouth, and jaw	-
59	Types of lasers used in dentistry	-	 The lasers that are most commonly used in dentistry are diode lasers, argon lasers, Nd-YAG lasers, carbondioxide lasers, the Erbium lasers and more. The carbon dioxide lasers produce laser waves that are very well absorbed by water and are mostly used to treat soft tissues. 	-
60	Lasers in dentistry	-	The laser instruments used by dentists create a narrow and focused beam of light designed to react to specific tissue. Each	-

			laser instrument produces different wavelengths in order to target specific	
61	Laser device used in dentistry	-	Mostly diode lasers are being extensively used in the field of dentistry.	-
62	Benefits of laser dentistry	-	A faster healing time Less post-surgical bleeding Less pain Anesthesia may not be necessary	-
63	Urology	-	Urology, also known as genitourinary surgery, is the branch of medicine that focuses on surgical and medical diseases of the male and female urinary-tract system and the male reproductive organs.	-
64	Types of lasers used in urology		KTP:YAG (Potassium titanyl phosphate), LBO:YAG (lithium borate), diode lasers, Holmium (Ho):YAG and Thulium (Tm):YAG lasers.	-
65	Laser uses in surgery		With proper use, lasers allow the surgeon to accomplish more complex tasks, reduce blood loss, decrease postoperative discomfort, reduce the chance of wound infection, and achieve better wound healing. As with any type of surgery, laser surgery has potential risks.	-
66	Otolaryngology		Otolaryngology is a medical specialty which is focused on the ears, nose, and throat. An otolaryngologist is often called an ear, nose, and throat doctor, or an ENT for short.	-
67	Lasers in otolaryngology	Est	Pulsed dye lasers are being more broadly adopted for treatment of a wide range of true vocal fold and laryngeal disorders. Lasers are used to treat ear disease and cranial base disorders as well Lasers are also used to reduce or eradicate ascular lesions and neoplasms in infants, nildren, and adults that obstruct the airway.	-
68	Laser in nasal surgery	-	CO2 laser are mostly used in ENT, particularly appreciated for the high degree of precision in cutting combined with an excellent coagulation effect.	-
69	Tissue welding	-	Tissue welding is a relatively new procedure that aims to seal wounds and openings in a surgery using laser.	-

			The function of lasers in welding is to	
			bring about efficient delivery of heat to the	
	.		tissues in the junction.	
70	Lasers in tissue	_	The main molecules that absorb heat are	_
	welding		water, hemoglobin, and melanin. Water has	
			strong absorption in the NIR region. This	
			makes the use of solid-state and CO2 lasers	
			ideal for water based heating.	
			The advantages of the welding procedure	
	Benefits of laser		with respect to standard suturing and	
71	tique welding	-	stapling are reduced operation times, lesser	-
	tissue weiding		inflammation, faster healing and increased	
			ability to induce tissue regeneration.	
			The welding plants are expensive,	
	T · · · · · · · · · · · · · · · · · · ·		depending upon the equipment, relatively	
	Limitation of		expensive. The disadvantage is	
72	laser tissue	-	counteracted by the low amount used	-
	welding		compared to the welding time and also that	
			there are few post welding operations	
			there are rew post weiding operations.	
			LIS is various substances are applied on	
	т.,·		the approximated edges of the tissue,	
73	Laser tissue		before the lasing process. This localizes the	-
	soldering(L1S)		heat generated by the laser light to the	
			region of the protein glue, protecting the	
			underlying tissue from excessive heat.	
			• Increasing the laser irradiance and thus	
			surface temperature resulted in an	
			increased severity of histological	
	Photothermal -		injury.	
74	effects of laser	- /	Thermal denaturation of tissue	-
	tissue soldering		collagen and necrosis of the intimal	
			layer smooth muscle cells increased	
			laterally and in depth with higher	
		DESIGN	temperatures. UTURE	
		Ect	Variations in laser irradiance, exposure	
	Ontinal		time, solder composition, chromophore	
	Optical		type and concentration. To determine the	
75	parameters of	-	parameters, an in vitro study was	-
	laser tissue		performed using an 808-nm diode laser in	
	soldering		conjunction with an indocvanine green	
			(ICG)- doped albumin protein solder to	
			weld boyine aorta specimens.	
	UNIT-4	NON THERM	TAL DIAGNOSTIC APPLICATIONS	
			Optical coherance tomography or OCT is	
	Optical		a non-contact, non-invasive imaging	
76	coherence	-	technique used to obtain high resolution	-
	tomography		cross sectional images of the retina and	
			anterior segment.	
רד	Principle of OCT		OCT images obtained by measuring,	
//		-	• Echo time	-

			• Intensity of reflected light.	
			Source of light :	
			• 830 nm diode laser	
			• 1310 nm AS-OCT	
			 Time domain – OCT 	
78	Types of OCT	-	 Spectral domain – OCT 	-
			Non - invasive	
			Non - contact	
	Advantages of		 Minimal cooperation needed 	
79	OCT	-	 Pick up earliest sign of disease 	-
	001		 Quantitatively monitor disease / 	
			staging	
			 Best for optically transparent 	
			tissues	
80	Disadvantages of	-	Diminished penetration through	_
	OCT		Retinal / sub-retinal haemorrhage	
			> Requires pupil diameter >4 mm	
			Non-invasive imaging technique used to	
01			depict relative tissue stiffness or	
81	Elastography		displacement(strain) in response to	-
		imparted force		
			• Excitation – transmission of stress	
			in a tissue	
	Aim of		• Acquisition – recording the signal	
			induced by the tissue deformation	
82	elastography		due to the stress	-
			• Analysis / post treatment – analysis	
			of tissue strain induced by the	
			propagation of the stress	
			Based on type of force applied-	
			Quasi – static elastrography	
	Techniques of elastography		• strain elastography	
02		DECICA	Dynamic- elastrography	
83		DESTUN	Acoustic radiation	-
		Eat	• Forced impulse imaging	
		ES	• Transient elastography	
			• Shearwaveelastography	
			• First elastography technique	
			developed; most widely used	
84	Advantages of	-	and validated.	-
	elastrography		• Dosn'trequire a complex	
			software.	
			• Lessuser – dependent	
			• Better resolution than SE	
85		-	• Better transfer of shear	_
	Advantages		modulus contrast to image	
			contrast	
			• Easy to use	
	Advantages of		Ouantification of tissue	
86	transient	-	elasticity	-
	elastography		Rapid, painless	
	1	l		l .

			Good reproducibility	
87	Advantages of shearwave elastography	-	 Displayed in real time, like a conventional ultrasound image. Good reproducibility. Quantitative value of stiffness Very short acquisition time (~30ms). 	-
88	Clinical application of elastography	-	 Breast imaging Prostate imaging Thyroid imaging Liver imaging Cardiac elastography 	-
89	Laser induced fluorescence	-	Laser induced fluorescence (LIF) is the optical emission from molecules that have been excited to higher energy levels by absorption of electromagnetic radiation.	-
90	Advantages of LIF		 i) To get two and three – dimensional images since fluorescence takes place in all directions. ii) Signal to noise ratio of the fluorescence signal is very high. iii) Good sensitivity. 	-
91	Lasers used in LIF		 Excimer lasers XeF(351 nm), Xecl(308 nm) etc are usually used Spectral width – 0.3 nm Pulse width 10 ns 	-
92	Various techniques in Raman spectroscopy		 Absorption spectroscopy Reflectance spectroscopy Fluorescence spectroscopy Raman spectroscopy 	_
93	Advantages of silicon detectors method	- Es t	 Fluorescence emission is reduced Spetra with acceptable SNRS ratios can be achieved with relatively short integration time on th order of a few seconds 	-
94	Clinical application of Raman spectroscopy	-	 Raman spectroscopy has been studied extensively for tissue diagnosis in four main organ sites: Breast(breast cancer) Esophagus Cervix(Cervical intraepithelial neoplasia) Skin (Melanoma & Non- melanoma skin cancers) Brain Eye Biological fluids 	-
95	Other	-	i. Raman spectroscopy has also been	-

	annligations of		to determine verieus enslutes such	
	applications of		to determine various analytes such	
	Raman		as those in the blood (eg.	
	spectroscopy		determination of glucose	
			concentration in diabetes patients)	
			ii. The transdermal measurement of	
			blood glucose using the tissue	
			modulation for extraction.	
			1. Ophthalmology	
	TT - 1 1		2. Dentistry	
0.6	Holographic		3. Urology	
96	techniques in	-	4. Otology	-
	medicine		5. Pathology	
			6. Orthopaedics	
			 Endoscopic holography has 	
			potential of providing a powerful	
			tool for non-contact high resolution	
			3D imaging and non destructive	
07	Endoscopic		maging and non-destructive	
97	holography		measurements inside natural	-
			life and the second second second	
			difficult to access environment.	
			o It combines the features of	
			holography and endoscopy.	
			> LSCI is a technique based on the	
	Laser speckle		dynamic change in this back	
98	contrast imaging		scattered light as a result of	-
	(LSCI)		interaction with RBC.	
	(_~)		It can be used to visualize perfusion	
			in various tissues.	
			1. Rheumatology	
			2. Burns	
	Clinical		3. Dermatology	
99	applications of		4. Ophthalmology	-
	laser speckle		5. Neurology	
		DESIGN	6. Gastro-intestinal tract surgery	
		Fc	\circ It's a cheap	
	Advantage of		 Non-contract and 	
100	speckle lasers	-	 Reliable imaging modality 	-
	imaging		that can measure blood perfusion at any	
			time during a clinical examination.	
	UNIT-5	DIAGNOSTIC	AND THERAPEUTIC TECHNIQUES	
	0111-5	DIAGNOSTIC	AND THERATEOTIC TECHNIQUES	
			"Medical imaging" - The process of	
101	Imaging	-	making a visual representation of	-
			something by scanning it with a detector or	
			electromagnetic beam.	
			Any microscope technique where the entire	
102	Field imaging	-	sample is exposed to light is known as	-
			'widefield' imaging.	
102	Biological		An arrangement or organization of parts to	
103	structures	-	form an organ, system, or living thing	-

104	Vitro	-	When something is performed in vitro, it	-
			concerned with the diagnosis of illness or	
105	Diagnostic	-	other problems	-
			The process of identifying a disease	
			condition or injury based on the signs and	
			symptoms a patient is having and the	
106	Clinical	-	patient's health history and physical exam.	-
	diagnostic		Further testing, such as blood tests,	
			imaging tests, and biopsies, may be done	
			after a clinical diagnosis is made.	
107	Dhotothanany		The use of light in the treatment of physical	
107	Phototherapy	-	or mental illness.	-
109	Types of		Single light phototherapy	
108	Phototherapy	-	Double and triple light phototherapy	-
			No need for eye shielding	
109	Advantages	-	Simple deployment for home phototherapy	-
			Low risk of over heating the infant	
			May include noise from the fan in the light	
			source.	
110	Disadvantages	-	Decrease of delivered energy with aging	-
	0	· · ·	and/or breakage of optical fibres.	
			Some new fibrotics units now incorporate	
			Photodiodes as a light sorce.	
			that uses a photosensitizer (PS) or	
			photosensitizing agent, and a light of	
	Photodynamic		appropriate wavelength, which in the	
111	therapy(PDT)	-	presence of oxygen will lead to the	-
	(incrup)(iDi)		generation of cytotoxic species and	
			consequently to cell death and tissue	
			destruction.	
			1) Application of photosensitizer drugs-	
		DESIGN	Light sensitizing liquid, cream, intravenous	
			drug (photosensitizer) is applied or	
		Fct	administered.	
112	Three steps in		2) Incubation - There is an incubation	
112	PDT	-	period of minutes to days.	-
			3) Light activation-Finally target tissue is	
			then exposed to specific wavelength of	
			light that then activates the	
			photosensitizing medication.	
			Type I Reaction	
			• Direct reaction with substrate(cell	
	Machaniana -f		membrane or molecule)	
113	Mechanism of	-	• Iranster of H atom to form	-
			radicies.	
			Transfor of overson to form singlet	
			• I ransier of oxygen to form singlet	
			UNYSCII. An assay is an investigative (analytic)	
114	Assay	-	procedure for qualitatively assessing or	-
L		1	procedure for quantativery assessing of	

r				
			quantitatively measuring the presence,	
			amount, of functional activity of a target	
			Photo analyte).	
			Photosensitizers are molecules that can be	
115			activated by light in order to generate ROS	
115	Photosensitizer	-	that can damage cell structures from	-
			microorganisms or from diseased	
			mammalian cells leading to cell death	
			• killing acne-causing bacteria on the	
			skin.	
	Δ dyantages of		 affecting only targeted cells, 	
116	PDT	-	helping to maintain skin integrity.	-
			• reducing the size and activity of	
			sebaceous glands.	
			• helping fade old acne scars.	
			It can only treat areas where light can	
			reach. That means it can only be used to	
117	Disadvantages of		treat cancer on or just under the skin, or in	
11/	PDT	-	the linings of some organs. Also, it cannot	-
			be used in people with certain blood	
			diseases.	
			Palliative treatment of obstructing	
			esophageal cancer:	
			• palliative treatment of obstructing	
			endobronchial lesions:	
118	Oncological		• treatment of early stage non-small-cell	_
110	application		lung cancer in patients who are ineligible	
			for surgery and radiotherapy:	
			• treatment of high-grade dysplasia in	
			Barrett's esophagus:	
			Non-Oncology Indication means any	
			Indication in humans other than an	
	Non-Oncological		Oncology Indication For clarity treatment	
119	application	DESIGN	of separate stages or forms of the same	-
	upplication	L D L D I D I V	Non-oncology Indication would not be	
		Fei	separate Non-oncology Indications	
		L3	Biostimulation refers to the addition of rate	
			limiting nutrients like phosphorus	
	Rio stimulation		nitrogen ovygen electron donors to	
120	effect	-	severely polluted sites to stimulate the	-
	cilect		existing bacteria to degrade the bazardous	
			and toxic contaminants	
			Non ionizing rediction	
121	LASER	-	monochrometic	-
			Missliened leser heem	
	Sources of loser		Equipment Molfunction	
122	Sources of laser	-	Equipment Manufaction	-
	nazaru		A soldental ava avposure during alignment	
			Accidental eye exposure during angiment	
100	C of other second		Signage, Eyewear, Laser Key, Blast shields,	
123	Salety measures	-	Evolve laser Blast shield, Hellum laser	-
1			Blast shield	

124	Urological laser		Bladder Biopsies, Lithotripsy, Fulguration	
124	Procedures		of Bladder tumors, Strictures	-
125			Laser foot Pedal	
			Laser used correctly	
	Procedural		• Laser in "standby" when not in	
123	Practices	-	direct use	
			Smoke evacuator used whe lasing produces	
			particulates.	
		PLACEMENT	QUESTION AND ANSWERS	
126	Acronym -	_	Microwave Amplification by Stimulated	_
120	MASER		Emission of Radiation	
	One way to		A wave packet	
127	describe a	-		-
	Photon			
1.00	What determines		Wavelength	
128	the color of	-		-
	light?			
	Scientist first		Albert Einstein	
100	came up with the			
129	idea of	-		-
	stimulated			
	emission			
120	Which laser is		Laser bar-code scanners	
130	considered "eye			-
	Sale ?			
	Absorption what		Anomor d. Infinity	
	is the lifetime of		Explanation: At the ground state, the atoms	
	atoms ground		are perfectly stable. They are under no	
131	state?		excessive force that might lead to become	_
151	a) 1 second		unstable All the forces are balanced. Thus	
	b) 1 minute		as the atom is stable in ground state, its	
	c) 1 hour	D. D. C. L. C. L.	lifetime is infinity.	
	d) Infinity	DESIGN	INIO FOOK POTOKE	
	Where is ND:		Answer: a - Cosmetic Surgery	
	YAG most	ESI	Explanation: ND: YAG is most commonly	
	commonly used?		used for cosmetic energy because it has the	
	a) Cosmetic		property of maximum energy absorption by	
132	Surgery	-	the target (hair or lesion) with minimum	-
	b) Welding		absorption by the surrounding skin	
	c) Photography		structures.	
	d) Optical			
	Communications			
	The information		Answer: b - Bandwidth	
	carrying capacity		Explanation: Laser has a large bandwidth.	
133	of laser is		The rate at which the information can be	
	enormous due its	_	transmitted is proportional to bandwidth	-
	large		and the bandwidth is proportional to carrier	
	a) Coherence		trequency. Because of these properties,	
	b) Bandwidth		Laser is widely used as optical carrier	
	c) Directionality		signal.	

	d) Intensity			
134	Which characteristic of LASER allows it to be used in holography? a) Coherency b) Directionality c) Intensity d)Monochromati city	_	Answer: a - Coherency Explanation: The production of an image in a hologram takes place via a process called reconstruction. In this process, the image is "reconstructed" in the form of a hologram. This reconstruction if possible, via LASER as they are highly coherent.	_
135	type of laser is used in CD and DVD players?	-	Semiconductor Lasers	_
136	Why lasers are used in "Laser Printers" ?		They can be focused down to very small spot sizes for high resolution	-
137	Which color of light has the shortest wavelength ? a) Yellow b) Blue c) Red d) Green		Answer : Blue	-
138	The Eximer laser produces light with what wavelength? a) Visible b) Ultraviolet c) Infrared		Answer : b) Ultraviolet	-
139	Laser energy is used to break up kidney or gallstones in process called? a) Trbecularplasty b) Lithotripsy c) Viscocanalostom y	Est	ING YOUR FUTURE cd. 2000 Answer : b) Lithotripsy	-
140	Chemical lasers use to produce their beams. a) Excessive amounts of electrical power b) Small amounts of electrical power c) No	_	Answer : c) No electrical power	_

	electrical power			
141	What type of laser could cause skin cancer if not used properly? a) Red semiconductor laser b) Blue semiconductor c) Eximer laser d) YAG laser	_	Answer: c) Eximer Laser	_
142	What is the region enclosed by the optical cavity called? a) Optical Region b) Optical System c) Optical box d) Optical Resonator		Answer:d Explanation: The optical cavity resembles an oscillator as it provides feedback of the photons by reflection, at the mirrors. Therefore, the area enclosed inside the optical cavity is called optical resonator.	-
143	As wavelength gets longer, the laser light can be focused to a) Larger spot sizes b) Smaller spot sizes		Answer : b) Smaller spot sizes	-
144	Which of the following is not a characteristic of LASERS? a) Monochromatic b) Coherent c) Divergent d) Intense	DESIGN - ES	Answer:c Explanation: The lasers are highly directional having almost no divergence. The output beam of laser has a well- defined wave front due to which it can be focused on a point. Lasers are highly intense compared to ordinary light. They are monochromatic and coherent.	-
145	Laser is used in LIDAR for what purpose? a) High-Speed Photography b) Range finder c) Optical Carrier signal d) Drilling	-	Answer: b - Range finder Explanation: LIDAR stand for Light Detection and Ranging. Laser is used in LIDAR as range finder. The transit time of transmitted and reflected pulse of laser light is recorded and the distance of the reflecting object is estimated.	-
146	Epilepsy	-	(Neurological) disorder in which brain activity becomes abnormal.	-

147	In the sampler, the range of the sample size is from a) 0.1 to 8.5 ml b) 1 to 8.5 ml c) 0.85 to 0.1 ml d) 8.5 to 10 ml	-	Answer: a Explanation sample size It utilizes cu The sample evaporation errors up to	: With this sampler, the may range from 0.1 to 8.5 ml. ups of sizes 0.5, 2, 3 and 10 ml. plate is kept covered to prevent , which may sometimes lead to 5%.	-
148	The blood pressure within the glumerular capillaries is of mercury. a) 80 mm b) 70-80 mm c) 90 mm d) 70-90 mm	·	Answer: d-7 Explanation at very high the glomeru pressure wit is 70–90 mr through the the state of arteriole lea	70-90 mm : The renal arteries carry blood pressure from the aorta into lar capillary tuft. The blood hin the glomerular capillaries n of mercury. The blood flow capillary tuft is controlled by contraction of the muscle of the ding to the tuft.	-
149	Optical fiber sensors are immune to electromagnetic disturbances. a) True b) False		Answer: a - Explanation sensors are consequentl disturbances are most sui applications flexible and	True : It is True. Optical fiber electrically passive and y immune to electromagnetic s. They can be miniaturized and table for telemetry . They are geometrically corrosion resistant.	-
150	Neutrophils are bigger than the red cells. a) True b) False	DESIGN ES	Answer: a - True Explanation: It is True. Neutrophils are nearly twice as big as the red cells.Lymphocytes are of the same size as the red cells but contain a large density staining nucleus and no granules. Neutrophils contain both a nucleus divided into several lobes and granules in their protoplasm.		_
Faculty Prepared		Mrs. M.Gayathri Devi, Assistant Professor, Department of BME.		Signature	