

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

II/IV/-

:

MKC

2021-22

Course Code & Course Name :

19MDC04 & LOGIC CIRCUITS FOR CLINICAL ENGINEERS

Year/Sem/Sec

BME

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	Unit-I : IC F	abrication a	and Operational Amplifier	
1.	IC	-	Active and passive components fabricated together on a single crystal of silicon.	-
2.	Sheet resistance	-	Sheet resistance is defined as the resistance in ohms /square offered by the diffused area.	-
3.	virtual ground of OP- Amp	-	It is a point that is at the fixed ground potential (0v), though it is not practically connected to the actual ground or common terminal of the circuit.	-
4.	slew rate	-	The maximum rate of change of output Voltage caused by a step input voltage	-
5.	input offset voltage	-	.A small voltage applied to the input terminals to make the output voltage as zero when the two input terminals are grounded.	-
6.	Sensitivity	-	The percentage or fractional change in output current per percentage or fractional change in power-supply voltage.	-
7.	CMRR	-	The relative sensitivity of an op-amp to a difference signal as compared to a common – mode signal.	-
8.	Ion implantation	-	Ion implantation is the introduction of ionized particles atoms into targets with enough energy to penetrate beyond surface regions.	-
9.	differential amplifier	-	A differential amplifier is one which amplifies the difference between its two input signals. The gain with which it amplifies the difference is called its differential.	-
10.	current mirror	-	The circuit in which the output current is forced to equal the input current	-

11.	voltage reference circuit	-	A voltage reference circuit is a constant d.c. voltage source which acts as a reference or standard for other circuits.	-
12.	operational amplifier	-	An operational amplifier is a direct coupled high gain amplifier usually consisting of one or more differential amplifiers.	-
13.	Widlar current source	-	It is a modification of the basic two- transistor current mirror that incorporates an emitter degeneration resistor for only the output transistor.	-
14.	Wilson current mirror	-	A Wilson current mirror or Wilson current source is a circuit configuration designed to provide a constant current source or sink	-
15.	surface passivation	-	The process of creating the protective SiO ₂ layer on the wafer surface is known as surface passivation.	-
16.	metallization	-	After devices have been fabricated in the silicon substrate, interconnections must be made to link all the components on the chip.	-
17.	input offset voltage	-	It is defined as the voltage that must be applied between the input terminals of an op-amp to nullify the output	_
18.	input bias current	-	It is defined as the average of the current entering into the input terminals of an op-amp.	-
19.	Why integrators are preferred over differentiators?	-	Integrators are more linear than the differentiators and the integrators reduce the power consumption than the high pass filter.	-
20.	Inverting Amplifier	-	The output is given as feedback to the inverted terminal of input by means of a feedback resistor.	-
21.	PSRR	-	Power Supply Rejection Ratio (PSRR) is defined as the change in op-amp's input offset voltage due to variations in supply voltage.	-
22.	Tail current	-	Tail current is defined as the current which is flowing through the common emitter resistor of the differential amplifier.	-
23.	Thermal drift	-	Thermal drift is defined as the change in offset current and offset voltage due to temperature.	-
24.	Different types of op-amp	-	Different types of op-amp: 1. Bipolar op- amp 2. FET op-amp 3. MOSFET op-amp	-
25.	Full power response	-	the maximum frequency of a large amplitude sine wave with which op- amp can have undistorted output.	-

	Unit-II : Characteristics of Op Amp and Applications			
26.	AC characteristics of Op	_	Frequency Response	_
	Amp		Slew rate	
27.	DC characteristics of op Amp	-	 Input resistance, Output resistance, Input bias current, Input offset current, Input offset voltage, Total offset voltage, Thermal drift, Power supply rejection ratio 	_
28.	Instrumentation amplifier	-	Instrumentation amplifier is a kind of differential amplifier with additional input buffer stages.	-
29.	Current to voltage converter	-	Special case of inverting amplifier in which input current is converted into a proportional output voltage.	-
30.	Voltage to current converter	-	Op Amp circuit that converts input voltage into a proportional output current.	-
31.	Differentiator	-	Op Amp circuit that provides an output signal which is proportional to the differentiation of the input signal	-
32.	Integrator	-	Op Amp circuit that provides an output signal which is proportional to the integration of the input signal.	-
33.	Application of differentiator	-	 Used in wave shaping circuits Used as a rate of change detector in FM demodulator 	-
34.	Application of Integrator	-	Used in ADCs, ramp generator, analog computers and signal wave shaping circuits.	-
35.	Differential amplifier	-	Differential Amplifier is a device which is used to amplify the difference between the <u>voltages</u> applied at its inputs.	-
36.	Subtractor	-	An op Amp circuit that provides difference between two signals	-
37.	Summing amplifier	-	An op Amp circuit that provides output signal which is proportional to the sum of the input signal.	-
38.	Voltage follower	-	Voltage follower is an <u>Op-amp</u> circuit whose output <u>voltage</u> straight away follows the input voltage.	_
39.	Application of voltage follower	-	 Buffers for logic circuits. In Sample and hold circuits. In Active filters. In Bridge circuits via transducer 	-
40.	Sign changer	-	Inverting amplifier circuit with unity gain.	-
41.	Scale changer	-	Inverting amplifier circuit with a gain of scale factor 'K'	-

42.	Frequency compensation	-	 External frequency compensation Internal frequency compensation 	-
43.	External frequency compensation techniques	-	 Dominant pole compensation Pole zero compensation 	_
44.	Slew rate	-	Defined as the maximum rate of change of output voltage of an op amp with respect to time.	_
45.	Input bias current	-	Average of two input bias current flowing into the non-inverting and inverting input of an op amp.	-
46.	Gain of inverting amplifier	-	$A_{v} = -\frac{R_{f}}{R_{i}}$	-
47.	Gain of non-inverting amplifier	-	$A_v = 1 + \frac{R_f}{R_i}$	-
48.	Input offset voltage	-	Voltage that must be applied between the input terminals of an op amp to nullify the output.	-
49.	Use of R _{comp} resistor	-	To overcome the errors due to the bias current	-
50.	Precision rectifier	-	Rectifier circuit with op amp that can rectify input voltage of a very small amplitude even less than forward voltage drop of diode.	-
	Unit-III : C	omparator a	and Waveform Generators	
51.	Comparator	-	An op amp circuit that compares a input voltage with a known reference voltage.	-
52.	Application of comparator	-	Zero crossing detector, window detector, Time marker generator, pulse meter.	-
53.	Zero crossing detector	-	A zero-crossing detector or ZCD is one type of voltage comparator, used to detect a sine waveform transition from positive and negative that coincides when i/p crosses the zero voltage condition.	-
54.	Window detector	-	A window detector circuit is used to determine whether an unknown input is between two precise reference threshold <u>voltages</u> . It employs two <u>comparators</u> to detect over-voltage or under-voltage	-
55.	Schmitt trigger	-	A Schmitt trigger is a regenerative comparator circuit that makes use of positive feedback to implement hysteresis and is used to remove noise from an analog signal while converting it to a digital one.	-
56.	Identify op amp configuration in comparator and Schmitt	-	Comparator – Open loop configuration Schmitt trigger – Closed loop configuration with positive feedback.	-

	trigger			
57.	Hysteresis voltage	-	Difference between the upper and lower threshold voltage	-
58.	Condition for oscillation	_	Barkausen criterion must be satisfied. $ A\beta = 1$ and angle $(A\beta) = 0$ degrees.	-
59.	RC phase shift oscillator	-	An oscillator circuit in which the required phase-shift of 360° is offered collectively by the RC phase-shift networks and the <u>Op-Amp</u> working in inverted configuration.	-
60.	Wein bridge oscillator	-	An audio frequency oscillator. It involves both positive and negative feedback.	-
61.	Multivibrator	-	A wave shaping circuit which gives symmetric or asymmetric square wave output.	-
62.	Types of multivibrator	-	Astable multivibratorMonostable multivibratorBistable multivibrator	-
63.	Astable multivibrator	-	Free running symmetric multivibrator that has no stable states. [has two quasi- stable state]	-
64.	Monostable multivibrator	-	One shot multivibrator that has one stable state and one quasi-stable state.	-
65.	Bistable multivibrator	-	Bistable multivibrator, in which the circuit is stable in either state. It can be flipped from one state to the other by an external trigger pulse. This circuit is also known as a <u>flip-flop</u>	-
66.	Frequency of oscillation of RC phase oscillator	-	$f_o = \frac{1}{2\pi(\sqrt{6})\text{CR}}$	-
67.	Frequency of oscillation of Wein bridge oscillator	-	$f_r = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$ if $R_1 = R_2 = R$ and $C_1 = C_2 = C$ then $f_r = \frac{1}{2\pi RC}$	-
68.	Application of wein bridge oscillator	-	 Used to measure the audio frequency. Can be designed for the long range of frequencies. It produces sine wave. 	-
69.	Multiplier	-	An analog multiplier is a circuit with an output that is proportional to the product of two inputs	-
70.	Schmitt trigger application	-	Pulse shapingSquare wave generation	-
71.	Disadvantage of wein bridge oscillator	-	Very high frequencies cannot be generated.	-
72.	Other names of	-	Mono shot, one shot, single shot, gating	-

	monostable multivibrator		circuit, delay circuit.	
73.	Feedback network used in RC phase shift oscillator	-	Three RC sections	_
74.	Feedback network used in Wein bridge oscillator	-	A lead-lag network	-
75.	Other names of window detector	-	Window comparator circuit or dual edge limit detector circuits	-
	Unit-IV : Ph	ase Locked	Loop and Data Converters	
76.	Blocks of PLL	-	a. Phase detector/comparator b. Low pass filter c. Error amplifier d. Voltage controlled oscillator	-
77.	Capture range	-	The range of frequencies over which the PLL can acquire lock with an input signal is called the capture range	-
78.	Lock range	-	The range of frequencies over which the PLL can maintain lock with the incoming signal is called the lock-in range or tracking range	-
79.	Expression of capture range	-	Lock in range $\Delta fL = +/-7.8$ fo / V	-
80.	Expression of lock range	-	Capture range = $+/- = [\Delta fL / (2^*\Pi^*R^*C)]$ 1/2	-
81.	Applications of PLL	-	a. Frequency multiplication/division b. Frequency translation c. AM detection d. FM demodulation e. FSK demodulation	-
82.	Disadvantages of flash type ADC	-	number of comparators needed almost doubles for each added bit	-
83.	Advantages of R-2R ladder DAC	-	a) Easier to build accurately as only two precision metal films are required.b) Number of bits can be expanded by adding more sections of same R/2R values.	-
84.	Disadvantages of R-2R ladder DAC	-	In this type of DAC, when there is a change in the input, changes the current flow in the resistor which causes more power dissipation which creates non-linearity in DAC	-
85.	Start of Conversion in ADC	-	This is the control signal for start of conversion which initiates A/D conversion process	-
86.	End of Conversion in ADC	-	This is the control signal which is activated when the conversion is completed	-
87.	Types of ADC	-	 Flash (comparator) type converter Counter type converter Tracking or servo converter Successive approximation type converter 	-

00	т		1. Weighted resistor DAC	
88.	Types of DAC	-	2. K-2K Ladder	-
			3. Inverted K-2K Ladder	
80	Alegeliste e course es		It is the maximum deviation between the	
69.	Absolute accuracy	-	actual converter output & the ideal	-
			It is the maximum deviation after asia	
90.	Relative accuracy	-	offeet emers have been removed	-
			A monotonia DAC is one whose analog	
01	Monotonicity		A monotonic DAC is one whose analog	
91.	Wonotometry	-	digital input	-
			total time required to convert an analog	
92.	Conversion time	-	signal into its digital output	-
			1 Eree running	
03	Stages of PLL operates		2 Capture	_
,55.	Stages of TEL operates	_	3 Locked / tracking	_
			Time taken for the output to settle	
94	Settling time of D/A	-	within specified band + $\frac{1}{2}$ LSB of its	_
<i>, , , ,</i>	converter		final value	
			Flash type ADC is the fastest ADC as the	
95.	Fastest ADC	-	conversion takes place simultaneously	-
			rather than sequentially	
			conversion time	
			settling time	
96.	Specifications of data	-	accuracy	-
	convertors		linearity	
			monotonic	
			The time during which the voltage	
97.	Sample period	-	across the capacitor in sample and hold	-
			circuit is equal to the input voltage	
			The time period during which the	
98.	Hold period	-	voltage across the capacitor is held	-
			constant	
			A sample and hold circuit is one which	
99.	Sample and hold circuit	-	samples an input s gnal and holds on to	-
	1		its last sampled value until the input is	
			sampled again	
100			Analog input signal,	
100.	Essentials parts of a DAC	-	D/A converter circuit,	-
			Switches for DAC	
	Unit-	V : Speciali	zed IC Applications	1
			Astable Multivibrator	
			Monostable Multivibrator	
			Missing pulse detector	
	Applications of 555		Linear ramp generator	
101.	Timer	-	Frequency divider	-
			Pulse width modulation	
			FSK generator	
			Pulse position modulator	
			Schmitt trigger	
102.	Applications of 555 timer	-	• Linear ramp generator	-
	in monostable mode		Frequency divider	

			Pulse width modulation.	
102	Applications of 555 timer		FSK generator	
103.	in Astable mode	-	Pulse-position modulator	-
			The 555 timer is an integrated circuit	
104.	555 IC	-	specifically designed to perform signal	-
			generation and timing functions	
			• A relaxation oscillator	
105.	Basic blocks of IC 555	-	KS flip flop	-
			Iwo comparator Discharge transistor	
			Discharge transistor. It has two basic operating modes:	
			• It has two basic operating modes.	
			• It is available in three packages 8	
106.	Features of 555 Timer	-	pin metal can, 8 pin dip, 14 pin	_
1000			dip.	
			• It has very high temperature	
			stability.	
			A voltage regulator is an electronic	
			circuit that provides a stable dc voltage	
107.	Voltage Regulator	-	independent of the load current,	-
			temperature, and ac line voltage	
108.	Classification Of Voltage	-	Series / Linear regulators	-
	Regulators		• Switching regulators.	
			transistor connected in series between	
109.	Linear voltage regulator	-	the unregulated dc input and the load	-
			and it conducts in the linear region	
			Switching regulators are those which	
			operate the power transistor as a high	
110.	Switching regulator	-	frequency on/off switch, so that the	-
			power transistor does not conduct	
			current continously.	
			• low cost	
111.	Advantages of IC voltage	-	nign reliability reduction in size	-
	regulators		evcellent performance	
			Multivibrators are regenerative circuits	
112.	Multivibrators	-	which are mainly used in timing	_
-			applications	
	Classification of		•AstableMultivibrators	
113.	multivibrators	-	 MonostableMultivibrators 	-
			BistableMultivibrators	
			The astableMultivibrators toggles	
114.	AstableMultivibrators	-	between one state and the other without	-
			the influence of any other external	
			control signal	
			shot requires an external signal called a	
115.	MonostableMultivibrators	-	trigger to force the circuit into a quasi-	-
			stable state for a particular time or delay	
116	A stable Multivibrators		The astable Multivibrators togalas	
110.	Astablemultivibrators	-	The astablemultivibrators toggles	-

			between one state and the other without the influence of any other external control signal	
117.	Pin 1	GND	Ground reference voltage, low level (0 V)	-
118.	Pin 2	TRIG	The OUT pin goes high and a timing interval starts when this input falls below 1/2 of CTRL voltage	-
119.	Pin 3	OUT	This output is driven to approximately 1.7 V below + <i>V</i> cc, or to GND	-
120.	Pin 4	RESET	A timing interval may be reset by driving this input to GND, but the timing does not begin again until RESET rises above approximately 0.7 volts	-
121.	Pin 5	CTRL	Provides "control" access to the internal voltage divider	-
122.	Pin 6	THR	The timing (OUT high) interval ends when the voltage at threshold is greater than that at CTRL	-
123.	Pin 7	DIS	Open collector output which may discharge a capacitor between intervals	-
124.	Pin 8	Vcc	Positive supply voltage, which is usually between 3 and 15 V depending on the variation	-
125.	Applications of frequency to voltage converter	-	 Frequency to voltage converter in tachometers. Frequency difference measurement. 	-
		Placemer	nt Questions	
126.	Hohmann Transfer Orbit	-	This is an intermediate orbit having a highly elliptical shape.	-
127.	Attitude & orbit control system (AOCS)	-	It consists of rocket motors that are used to move the satellite back to the correct orbit when an external force causes it to drift.	-
128.	Satellite Antennas	-	 Wire antennas: monopoles and dipoles Horn antennas Reflector antennas Array antennas 	-
129.	Passive Satellites	-	A satellite that only reflects signals from one Earth station to another or from several Earth stations to several others.	-
130.	Active Satellites	_	In active satellites, it amplifies or modifies and retransmits the signal received from the earth.	-
131.	Satellite orbits in terms of the orbital height	-	 GEO MEO LEO 	-
132.	MEO satellites	-	The GPS constellation calls for 24 satellites to be distributed equally among six circular orbital planes	-

133.	Frequencies allocated to the satellites:	-	 VHF: 01-0.3Mobile & Navigational Satellite Services L-band: 1.0-2.0 Mobile & Navigational Satellite Services C-band: 4.0-8.0 Fixed Satellite Service Ku-band: 12.0-18.0 Direct Broadcast Satellite Services 	-
134.	Statistical multiplexing	-	Allocate bandwidth to arriving packets on demand.	-
135.	Digital Video Broadcasting (DVB)	-	Digital Video Broadcasting (DVB) has become the synonym for digital television and for data broadcasting world-wide.	-
136.	High Power Amplifier	-	Amplifier may work with signals of all level, depending on where they are in the signal chain	-
137.	Proposed Broadband Satellite systems	-	TeledesicSkyBridgeSpaceway	-
138.	Non Geostationary Orbits (NGSO)	-	Polar OrbitEquatorial OrbitInclined Orbit	-
139.	Problems of Geosynchronous Satellite Communications Systems	-	 No coverage of polar region. Long time delay. Echo. Eclipse due to the earth and the sun. Sun Transit outage 	_
140.	Satellite Bus subsystems	-	 Mechanical structure Attitude and orbit control system Propulsion System Electrical Power System Tracking Telemetry and Command System Thermal Control System 	-
141.	Simplification	-	39.912 % of 79.908 + √3969.12 * 4.897 – 12.190 * 7.198 = ? Ans: 263	-
142.	Profit and Percentage	-	A Shopkeeper makes 30% profit when he gives 12% discount while selling an article. At the end of the day he gives a customer 6% additional discount so that the remaining articles are sold. What will be his new approximate profit percentage? Ans: 21%	-
143.	Number Series	-	Find the wrong term in the following number series?4, 12, 60, 360, 2520, 20160	-

			Ans: 4	
144.	Number Series	-	What value should come in the place of question mark in the given series?2209, 1849, 1681, 1369, 961, 841, ?Ans: 529	-
145.	Relation ship	_	Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-in-law of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not has any child. How is K related to T?	-
146.	Computer Awareness		The command to access the memory or the input/output device is carried by the Ans: Control bus	-
147.	Directions	_	A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the direction of his starting point with respect to his ending point? Ans: South	-
148.	Speed and Time	_	A train travelling at 72 km/hr crosses another train of length equivalent to five-sixth of its own length travelling in opposite direction at 60 km/hr in 9 seconds. Find the length of the second train?	_
149.	Profit and Loss		A, B and C entered into a partnership by investing Rs. 18000, Rs. 24000 and Rs. 30000 respectively. After 4 months, A withdraws one-third of the amount and B invested Rs. 16000 more. And after 3 months, C withdraw three-fifth of the amount. Find the total profit at the end of the year, if the share of B is Rs. 52000?	_

			Ans: 106750	
150.	Time and Work	-	35 men can complete a piece of work in 18 days. After 8 days from the start of the work, some men left. If the remaining work was completed by the remaining men in 14 days, then find the men left after 8 days from the start of the work? Ans: 10 men	-

Faculty Prepared

Signature

HoD