

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

BME & MDE

2021-22

Course Code & Course Name :

16BME06 - BODY AREA NETWORKS

Year/Sem

III&IV/V&VII

:

S No	Torm	Notation	Concept / Definition / Meaning /	Unite
3.1NU.	reim	(Symbol)	Units / Equation / Expression	Units
		Unit-	I: Introduction	
			Body Area Network (BAN) technology	
			is the use of small, low power wireless	
1	Body area		devices which can be carried or	_
1.	network		embedded inside or on the body.	-
			Applications include: health and	
			wellness monitoring.	
			A body area networks (BAN) can	
			provide a wide range of applications	
	Ban and health		in primary for medical healthcare such	
2.	care		as telemetering vital sign,	-
			telecontrolling medical equipment,	
	DEC	Z ALLACZ	and in addition for non-medical	
	DES	UNING	service such as entertainment.	
		Lot of	 A body area sensor network and its 	
		esta.	environment. A BASN can interact	
	Technical		with existing systems, such as	
3	challenges	_	networks in hospitals and retirement	_
5.		-	communities. Body sensors in BASN	-
			nodes provide data to the body	
			aggregator, which is central to	
			managing body events.	
			A sensor is a device that detects the	
4		_	change in the environment and	_
т.	Sensor		responds to some output on the other	
			system	
			The basic function of an electronic	
5		-	sensor is to measure some feature of	_
0.	Sensor design		the world, such as light, sound, or	
			pressure and convert that	

8. Components of biocompatibility Image: Components of biocompatibility Image: Components of consumption of consumptin on consumption of consis consumption of consumption o					
Biocompatibility - Biocompatibility - 6. - - Biocompatibility is the most commonly used term to describe appropriate biological requirements of a biomaterial or biomaterial used in a medical device. Biocompatibility has also been described as the ability of a material to perform with an appropriate host response in a specific application. 7. Biocompatibility energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility material - The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute 'biocompatibility 9. Biocompatibility material - The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 10. Optimal node placement - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n - 1. The to softial has no nodes. In the second electron shell, n = 2. 12. System security and reliability -				measurement into an electrical signal,	
8. Components of biocompatibility Energy supply Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially energy supply 7. Biocompatibility Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, distribution and storage of fuels. It is also sometimes called energy flow. 9. Biocompatibility Energy supply reformance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility construction of strength and low density value. 10. Optimal node placement Process the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s or biotal has no nodes. In the second electron shell, n = 2. 11. Number of nodes Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electricity grid, also known as an electrici yower "system". The securit				usually a voltage or current. The	
easily be converted into other electrical representations. Biocompatibility 6. 7. Biocompatibility 8. Components of biocompatibility 8. Components of biocompatibility 9. Biocompatibility 9. Biocompatibility 9. Biocompatibility 10. Optimal node placement 11. Number of nodes 12. System security and reliability 12. System security and reliability				electrical output of a given sensor can	
Biocompatibility Biocompatibility Biocompatibility Biocompatibility 6. - Biocompatibility appropriate biological requirements of a biomaterial or biomaterials used in a medical device. Biocompatibility has - also been described as the ability of a material to perform with an appropriate host response in a specific application. 7. Biocompatibility - Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, - transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility - The beneficial tissue response and the clinically relevant performance of a biomaterial, cyctotoxicity, anutagenicity, arctinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility - The result shows that through optimal node placement aproach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number. Nodes are selectively placed using the minimum transmission cost. 12. System security and reliability - - 12. System security and reliability - -				easily be converted into other electrical	
Biocompatibility Biocompatibility is the most commonly used term to describe appropriate biological requirements of a biomaterial used in a medical device. Biocompatibility has also been described as the ability of a material to perform with an appropriate host response in a specific application. 6. - 7. Biocompatibility energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility 9. Components of biocompatibility 9. Biocompatibility material 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability				representations.	
Biocompatibility commonly used term to describe appropriate biological requirements of a biomaterial or biomaterials used in a medical device. Biocompatibility has also been described as the ability of a material to perform with an appropriate host response in a specific application. 7. Biocompatibility energy supply - 7. Biocompatibility energy supply - 8. Components of biocompatibility - 8. Components of biocompatibility - 9. Biocompatibility material - 9. Biocompatibility biocompatibility - 10. Optimal node placement - 11. Number of nodes - 11. Number of nodes - 12. System security and reliability -				Biocompatibility is the most	
Biocompatibility appropriate biological requirements of a biomaterial or biomaterials used in a medical device. Biocompatibility has also been described as the ability of a material to perform with an appropriate host response in a specific application. 6. Biocompatibility 7. Biocompatibility energy supply 7. Biocompatibility energy supply 8. Components of biocompatibility 8. Components of biocompatibility 9. Components of biocompatibility 9. Biocompatibility 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability				commonly used term to describe	
6. a biomaterial or biomaterial used in a medical device. Biocompatibility has also been described as the ability of a material to perform with an application. 7. Biocompatibility energy supply 7. Biocompatibility energy supply 8. Components of biocompatibility 8. Components of biocompatibility 9. Biocompatibility 9. Biocompatibility 9. Biocompatibility 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability		Biocompatibility		appropriate biological requirements of	
6. - medical device. Biocompatibility has also been described as the ability of a material to perform with an appropriate host response in a specific application. 7. Biocompatibility energy supply - 7. Energy supply - 8. Components of biocompatibility - 9. Biocompatibility - 9. Biocompatibility				a biomaterial or biomaterials used in a	
also been described as the ability of a material to perform with an appropriate host response in a specific application. Biocompatibility energy supply Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. R. Components of biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility" 9. Biocompatibility of number of nodes 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability	6.		-	medical device. Biocompatibility has	-
8. Biocompatibility energy supply - Energy supply is the delivery of fuels or transformed fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility material - The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility material - Titanium Most biocompatibility 10. Optimal node placement Strict 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The Is orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability Security and reliability of the electricity grid, also known as an electric power 'system'. The security of				also been described as the ability of a	
appropriate host response in a specific application. Biocompatibility energy supply Energy supply is the delivery of fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. R. Components of biocompatibility 8. Components of biocompatibility 9. Biocompatibility 9. Biocompatibility 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability				material to perform with an	
application. Biocompatibility 7. Biocompatibility energy supply - 7. Biocompatibility energy supply - 8. Components of biocompatibility 9. Biocompatibility 9. Biocompatibility 9. Biocompatibility 10. Optimal node placement 11. Number of nodes 11. Number of nodes 12. System security and reliability 12. System security and reliability				appropriate host response in a specific	
Provide the second strength of the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and low density value. Image: second strength and low density value. Provide the second strength and strength and strength strength and strength and strength strength and streng				application.	
Biocompatibility energy supplyor transformed fuels to point of consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow.8.Components of biocompatibilityThe beneficial fissue response and the clinically relevant performance of a biocompatibility9.BiocompatibilityTitanium Most biocompatibility9.BiocompatibilityTitanium biocompatibility10.Optimal node placementStdd11.Number of nodesThe number of nodes11.Number of nodesThe number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The Is orbital has no nodes. In the second electron shell, n = 2.12.System security and reliabilitySecurity and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electricity grid, also known as an el				Energy supply is the delivery of fuels	
7. Biocompatibility energy supply - consumption. It potentially encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility - The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility - Titanium 9. Biocompatibility - Titanium as it possess very good strength and low density value. 10. Optimal node placement - The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The lis orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				or transformed fuels to point of	
7. energy supply - encompasses the extraction, transmission, generation, distribution and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility - The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility - Titanium 9. Biocompatibility GNING Titanium as it possess very good strength and low density value. 10. Optimal node placement - The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The is orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of		Biocompatibility		consumption. It potentially	
10. Optimal node placement System security and storage of fuels. It is also sometimes called energy flow. 11. Number of nodes The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility Titanium 9. Biocompatibility of the response source of a biomaterial cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 10. Optimal node placement Titanium as it possess very good strength and low density value. 11. Number of nodes The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	7.	energy supply	-	encompasses the extraction,	-
10. Optimal node placement and storage of fuels. It is also sometimes called energy flow. 8. Components of biocompatibility The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility Titanium 9. Biocompatibility Titanium 10. Optimal node placement The result shows that through optimal node placement Priores response selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				transmission, generation, distribution	
8. Components of biocompatibility The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility Titanium 10. Optimal node placement The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability System security and reliability and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				and storage of fuels. It is also	
8. Components of biocompatibility - The beneficial tissue response and the clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute 9. Biocompatibility - Titanium 9. Biocompatibility - Titanium 10. Optimal node placement - The number of nodes - 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - System security and reliability of the electricity grid, also known as an electric power 'system'. The security of			/	sometimes called energy flow.	
8. Components of biocompatibility - clinically relevant performance of a biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility material Titanium 9. Biocompatibility material Titanium 10. Optimal node placement 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability of the electricity grid, also known as an electric power 'system'. The security of				The beneficial tissue response and the	
8. Components of biocompatibility - biomaterial, cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility material - 9. Biocompatibility material - 10. Optimal node placement - 11. Number of nodes - 11. Number of nodes - 12. System security and reliability - 12. System security and reliability -				clinically relevant performance of a	
8. biocompatibility - mutagenicity, carcinogenicity and immunogenicity are considered to be the components which constitute "biocompatibility 9. Biocompatibility material Titanium 9. Biocompatibility material Titanium 10. Optimal node placement - 10. Optimal node placement - 11. Number of nodes - 11. Number of nodes - 12. System security and reliability - 12. System security and reliability -		Components of		biomaterial, cytotoxicity, genotoxicity,	
9. Biocompatibility material Titanium 9. Biocompatibility material Titanium 10. Optimal node placement The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability Security and reliability of the electricity grid, also known as an electric power 'system'. The security of	8.	biocompatibility		mutagenicity, carcinogenicity and	-
9. Biocompatibility material Titanium Most biocompatible material is Titanium as it possess very good strength and low density value. 10. Optimal node placement Std. The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability System security and reliability				immunogenicity are considered to be	
9. Biocompatibility material Titanium Most biocompatible material is Titanium as it possess very good strength and low density value. 10. Optimal node placement Std. 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. - 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				the components which constitute	
9. Biocompatibility material Titanium Most biocompatible material is 10. Optimal node placement Estd. 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of			\sim	"biocompatibility	
9. Biocompatibility material Most biocompatible material is 10. Optimal node placement The result shows that through optimal node placement 10. Optimal node placement The result shows that through optimal node placement 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				Titanium	
9. Biocompatibility material Titanium as it possess very good strength and low density value. 10. Optimal node placement Estd. 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability Security and reliability of the electricity grid, also known as an electric power 'system'. The security of	0			Most biocompatible material is	
material organization organization organization 10. Optimal node placement 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	9.	Biocompatibility	-	Titanium as it possess very good	-
10. Optimal node placement Estd. 2 The result shows that through optimal node placement approach, energy consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of		material DES	UNING	strength and low density value.	
10. Optimal node placement - </td <td></td> <td></td> <td>Lot of</td> <td>The result shows that through optimal</td> <td></td>			Lot of	The result shows that through optimal	
10. Optimal node placement - consumed in the network can be minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of			esta.	🭊 node placement approach, energy	
10. placement - minimized if nodes are selectively placed using the minimum transmission cost. 11. Number of nodes - The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	10	Optimal node		consumed in the network can be	
11. Number of nodes Image: placed using the minimum transmission cost. 11. Number of nodes The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	10.	placement	-	minimized if nodes are selectively	-
11.Number of nodestransmission cost.11.Number of nodes-11.Number of nodes-12.System security and reliability-12.System security and reliability-12.System security and reliability-12.System security and reliability-12.System security and reliability-13.System security and reliability-14.System security and reliability-15.System security and reliability-16.System security and reliability-17.System				placed using the minimum	
11.Number of nodes-The number of nodes is always one less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2.12.System security and reliability-Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				transmission cost.	
11. Number of nodes - less than the principal quantum number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				The number of nodes is always one	
11. Number of nodes - number: Nodes = n - 1. In the first electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				less than the principal quantum	
11. electron shell, n = 1. The 1s orbital has no nodes. In the second electron shell, n = 2. 12. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	11	Number of nodes		number: Nodes = n – 1. In the first	
12. System security and reliability - Security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of	11.		-	electron shell, n = 1. The 1s orbital has	-
12. n = 2. System security and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				no nodes. In the second electron shell,	
12.System security and reliabilitySecurity and reliability are terms used to discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				n = 2.	
12.System security and reliabilityto discuss the strength and stability of the electricity grid, also known as an electric power 'system'. The security of				Security and reliability are terms used	
12. System security the electricity grid, also known as an and reliability electric power 'system'. The security of	10			to discuss the strength and stability of	
and reliability electric power 'system'. The security of	12.	System security	-	the electricity grid, also known as an	-
		and reliability		electric power 'system'. The security of	

			an electricity grid is its technical	
			resilience (or strength), namely its	
			ability to quickly respond and remain	
			Wireless Body Sepson Networks	
			(MPSNa) are a subactof wireless	
	Pop anabitation		(WDSINS) are a subsetor wireless	
13.	DSn architecture	-	sensor networks, which can other this	-
			paradigin shift and can be used for	
			diseases	
			UISEASES.	
			hody and /or implanted his modical	
14.	Tion 1	-	sonsor nodes cond the consed data to	-
	Tier I		the coordinator or base station	
			Inter WIRSNer In Inter WIRSN	
			inter-wobins. In inter-wobin,	
15	Tior?		received data to the sink(s) after	_
15.	TIETZ		required data processing and data	-
			aggregation	
			$E_{\rm V}$	
		~	send the collected data to the remote	
16	Tior3		medical center and /or any other	_
10.	11015		destination via regular infrastructure	
			such as internet	
		\sim	With the proposed BSN architecture a	
			number of	
	Protocol	\sim	wireless biosensors including 3-lead	
17.	11000001		ECG. 2-lead ECG	-
			strip, and SpO2 sensors have been	
			developed	
			In this paper, a new energy-efficient	
	DES	GNING	routing protocol (EERP) has been	
	Energy efficient	Landa I.	proposed for WSNs using A-star	
18.	routing protocols	esta.	algorithm. The proposed routing	-
	for wbasn		scheme improves the network lifetime	
			by forwarding data packets via the	
			optimal shortest path.	
			UDP is unreliable without any ACK,	
			whereas TCP is reliable with ACK for	
10	Most efficient		each packet. UDP throughput will be	
19.	protocol	-	higher than TCP. But UDP does not	-
			ensure the delivery of the packet.	
			Same is true with power efficiency.	
			A Wireless Body Area Network	
			(WBAN) connects independent nodes	
20.	Wbasns	-	(e.g. sensors and actuators) that are	-
			situated in the clothes, on the body or	
			under the skin of a person. The	

			network typically expands over the whole human body and the nodes are connected through a wireless communication channel	
21.	Power consumption	-	Battery replacement in WBAN can be done easily. So there is no worry of power consumption.	-
22.	Requirements of wban	-	Reliability Latency Security Power Consumption	-
23.	Reliability	-	High reliability is required when data concerning health is sent by the WBAN sensors.	-
24.	Latency	·	The response time to emergency situations should not be long. Real- time transmission is required in this case.	-
25.	Security		Personal and critical data should be handled with care to ensure the privacy and security of data.	-
		Unit-II : I	Hardware for BAN	
26.	Processor DES	GNING Estd.	A processor (CPU) is the logic circuitry that responds to and processes the basic instructions that drive a computer. The CPU is seen as the main and most crucial integrated circuitry (IC) chip in a computer, as it is responsible for interpreting most of computers commands.	_
27.	MCU	-	It's controlling the hardware that implements the device's operation. The MCU receives inputs from buttons, switches, sensors, and similar components; and controls the peripheral circuitry – such as motors and displays – in accordance with a preset program that tells it what to do and how to respond.	-
28.	MCU Full Form	-	Microcontroller unit	-
29.	Low power MCUs	-	The C8051F98x is the industry's lowest power microcontroller (MCU), consuming as little as 150 μA/MHz in	-

			active mode and 10 nA in sleep mode	
			with full memory retention.	
	Mobile		Mobile computing is human-	
	Computing		computer interaction in which a	
	1 0		computer is expected to be transported	
20			during normal usage, which allows for	
30.		-	the transmission of data, voice, and	-
			video. Mobile computing involves	
			mobile communication, mobile	
			hardware, and mobile software.	
	Integrated		The baseband processor (BBP) allows	
	Processor		user data to be processed in the digital	
			domain between an end application	
31.		-	and the transceiver device The	-
			baseband processor design is also	
			easily designed using system	
			modeling tools such as Simulink.	
	Radio transceiver		In radio communication, a transceiver	
			is an electronic device which is a	
			combination of a radio transmitter and	
32.			a receiver, hence the name. It can both	-
			transmit and receive radio waves	
			using an antenna, for communication	
			purposes.	
	Memory		Memory refers to the processes that	
			are used to acquire, store, retain, and	
33			later retrieve information. There are	-
00.		$\sim \times$	three major processes involved in	
			memory: encoding, storage, and	
			retrieval.	
	Encoding	CALMC	Encoding is the process of putting a	
	LULJ	UNING	sequence of characters (letters,	
34.		Ecto	– numbers, punctuation, and certain	-
		.stu.	Symbols) into a specialized format for	
			efficient transmission or storage.	
	Storage		Storage is a process through which	
			digital data is saved within a data	
35.		-	storage device by means of computing	-
			technology. Storage is a mechanism	
			that enables a computer to retain data,	
	Dotaional		Information natrious lie the average (
	Ketrievai		altorination retrieval is the process of	
			recourses that are relevant to an	
26			information need from a callection of	
- 50.		-	these recourses. Searches can be been	-
			on full toxt or other content based	
			indoving	
			maexing.	

	Antenna		An antenna or aerial is the interface	
			between radio waves propagating	
37.		-	through space and electric currents	-
			moving in metal conductors, used	
			with a transmitter or receiver.	
	PCB antenna		A PCB Trace antenna is comprised of a	
			trace drawn directly onto a PCB.	
38.		_	Furthermore, depending on the type of	-
			antenna and your space requirements.	
			the type of trace will vary.	
	Wire antenna		A random wire antenna is a radio	
			antenna consisting of a long wire	
			suspended above the ground, whose	
39		-	length does not bear a relation to the	-
07.			wavelength of the radio waves used.	
			but is typically chosen more for	
			convenience	
	Ceramic antenna		A Ceramic Chip antenna is a specific	
			type of antenna vaunted for its small	
			spatial requirements. Furthermore,	
			these particular antennas are usually	
			integrated into PCBs to emit high-	
40.			frequency electromagnetic wayes.	-
			However, they are limited in their	
		\sim	range, which makes them ideally	
			suited for small devices, such as WiFi	
		\sim	routers and smartphones.	
	External antenna		A connector that allows an external	
			antenna to be connected for improved	
			reception while in vehicles and/or	
			homes. The antenna may be located	
41.	DES	GNING	outdoors for maximum signal	-
		the second second	🚽 performance. External antenna jacks	
		LSTa.	were common before smartphones,	
			but are now extremely rare.	
	Directional		A directional antenna or beam antenna	
	antenna		is an antenna which radiates or	
			receives greater power in specific	
40			directions allowing increased	
42.		-	performance and reduced interference	-
			from unwanted sources. Satellite	
			television receivers usually use	
			parabolic antennas.	
	Semi directional		Semi-directional antennas	
	antenna		are designed to direct the RF signal in	
43.		-	a specific direction for point-to-point	-
			communication. Semi-directional	
			antennas are used for short to medium	

			10	
			distance communication indoors or	
			outdoors. The main types of semi-	
			directional antennas are Patch/Panel	
			and Yagi.	
	Omni directional		An omnidirectional antenna is a class	
	antenna		of antenna which radiates equal radio	
			power in all directions perpendicular	
44.		-	to an axis, with power varying with	-
			angle to the axis, declining to zero on	
			the axis.	
-	Dipole antenna		A dipole antenna commonly consists	
	Dipole unterna		of two identical conductive elements	
			such as metal wires or rods The	
			dipole is the simplest type of antenna	
45		_	from a theoretical point of view. Most	_
чэ.			commonly it consists of two	
			conductors of actual length oriented	
			conductors of equal length oriented	
			end-to-end with the recaline	
	D		connected between them.	
	Power sources		A source of electrical energy. Electric	
			power system, a network of electrical	
			components used to supply, transmit	
46.			and use electric power. Electricity	-
		\sim	generation, the process of generating	
			electric power from other sources of	
			primary energy.	
	Batteries		a container consisting of one or more	
47			cells, in which chemical energy is	
47.			converted into electricity and used as a	-
			source of power.	
40	Fuel cells	C 11111C	A cell producing an electric current	
48.	DES	GNING	direct from a chemical reaction.	-
	Sensor nodes		A sensor node, also known as a mote,	
		LSTA.	is a node in a sensor network that is	
			capable of performing some	
			processing, gathering sensory	
49.		-	information and communicating with	-
			other connected nodes in the network	
			A moto is a pode but a pode is pot	
			always a mote	
	Fuel cells for		Pure hydrogen type, there are	
FO	ruei cells for		hudroserbop fuels for fuel cells	
50.	sensor nodes	-	including dissel methanel	-
			Including diesel, methanol	
	Unit-III : Wir	eless Comm	nunication And Network Protocols	
	Wireless		Wireless communication is the transfer	
51	communication	_	of information between two or more	_
51.		_	points that do not use an electrical	_
			conductor as a medium by which to	

			perform the transfer.	
52.	Wireless Communication protocol	-	The wireless communication protocol is the set of rules used to exchange data between electronic devices. Ex: Bluetooth, ZigBee, LoRa, NBIoT, WiFi, and Thread.	-
53.	RF communication	-	Radio frequency communication is used in human body for integrated communications from different in body implants and body sensors will allow hearing for deaf, sight for blind and mobility for disabled.	-
54.	Application of RF communication	-	Cochlear hearing implants Pacemakers on bladder control devices	-
55.	Body effects on RF transmission	-	The various tissues and organs have their own unique conductivity, dielectric constant and characteristic impedance.	-
56.	Signal at the implant		It is the sum of a low transmitted power, antenna gain, Transmission losses and the high body losses.	-
57.	RF Antenna		RF Antenna input is typically used to connect a television antenna, cable TV wire, or satellite feed to a television, VCR, or other device that can process radio-frequency video signals, including some computers	-
58.	Antenna Design		Antenna design is an important factor in using UAVs over extended range and where there are obstructed views.	_
59.	Elements of $D \in S$ antenna	<u>std.</u>	 Floating conductive radiator Reference Feedline Impedance matching network 	-
60.	Drawbacks of small antenna	-	Poor efficiency Low radiation resistance Narrow Bandwidth and High Q	-
61.	Patch antenna	-	It is used for pacemaker applications	-
62.	Helix antenna	-	It is required for stent or urinary tract implant	-
63.	Radiation pattern	-	Radiation pattern are made with the body phantom using a self contained transmitter immersed in the liquid. If the Antenna to be attached with a cable then it contribute Radiation pattern.	-

64.	Test procedures	-	Signal reception levels	-
	of antennas		Immunity to noise.	
	Propagation		The input power, absorption power in	
65	characteristics	_	human body, accepted power, input	_
00.			efficiency, accepted efficiency, and	
			total efficiency.	
	Base station		In the area of wireless computer	
			networking, a base station is a radio	
			receiver/transmitter that serves as the	
66.		-	hub of the local wireless network, and	-
			may also be the gateway between a	
			wired network and the wireless	
			network	
	BAN Topologies		Star topology	
67	Driv ropologies	_	Mesh topology	_
07.			Hybrid topology	-
	Chand Alana		In a standalana application somer	
	Stanu - Alone		in a standarone application server	
68.	ropologies	-	MDM Lich common an an a	-
			MDW Hub components on a	
	Ci 1 1	~	standalone application server instance.	
(0)	Stand alone		I ne standalone database requires one	
69.	database	\sim	server while distributed databases	-
			require multiple servers (at least two).	
	Wireless Personal		A wireless personal area network	
	Area network		(WPAN) is a PAN carried over a low-	
70.			powered, short-distance wireless	-
			network technology such as IrDA,	
			Wireless USB, Bluetooth or ZigBee.	
	ZigBee	\sim	Zigbee is a low-cost, low-power,	
			wireless mesh network standard	
71.	DES	CMINC	targeted at battery-powered devices in	-
	ULS	UNING	wireless control and monitoring	
		Ectol.	applications.	
	IEEE802.15.1	-stu.	 It defines physical layer (PHY) and 	
			Media Access Control (MAC)	
70			specification for wireless connectivity	
12.		-	with fixed, portable and moving	-
			devices within or entering personal	
			operating space.	
	IEEE P802.15.13		It used to enable quick multimegabyte	
73.		-	data transfers within the scope of a	-
			WPAN.	
	IEEE P802.15.14		This standard specifies the physical	
			layer (PHY) and media access control	
			sublayer (MAC) for impulse radio	
74.		-	ultra wideband (UWB) wireless ad hoc	-
			connectivity with fixed, portable, and	
			moving devices	
L	1	1		

	ZigBee device		ZigBee coordinator	
75.	types	-	ZigBee router	-
			ZigBee end device	
	Uni	t-IV : Coexi	stence Issues With BAN	
	Coexistence		Coexistence remains one of the major	
	issues with		concerns and challenges of license-	
	WBAN		exempt bands, as they are used for	
76			WBANs.	
70.		-	A variety of approaches has been	-
			developed, as the avoidance of	
			coexistence impact is subject to a	
			conflict of objectives.	
	Interferences in		When multiple BANS coexist then the	
	coexistence issues		performance of an individual BAN is	
			degraded due to interference with	
			neighbouring BANS.	
77.		-	Interference causes unsuccessful	-
			transmission data, thus lowering the	
			throughout , and energy of devices is	
			wasted is an important resource for	
	Classification of		WBAIN devices,	
	interformed		systems running the same protocol in	
	Interference		the same or neighboured frequency	
			hand	
			Extrinsic interference from wireless	
			systems running a different protocol in	
78.		/ -X	the same or neighboured frequency	-
			band	
		\sim	Extrinsic interference from (micro)	
	DES	GNING	yo electronic systems with	
	0.00	GIVING	electromagnetic or RF-emission (EMI,	
		Fstd	7 RFI)	
	Parameters of		The spectral mask	
	frequency		The effective radiated power	
79	behaviour in	-	The peak power density	
	physical layer		The frequency range(s)	
			The transmitter's and receiver's	
	T . I		spurious emissions	
	Intrinsic		All nodes use the same frequency	
	interference		characteristics, i.e., the same	
	penavior		pandwidth and the same modulation	
80			All podes follows the same shapped	
00.		-	access mechanisms i.e. I.BT or back	_
			off strategies	
			All nodes may come with similar	
			traffic characteristics with regard to	
			and characteristics, while regard to	l

			traffic load & traffic cycles	
81.	Extrinsic interference behavior	-	The nodes are operated within the same frequency band. The frequency characteristics of the interferer might be different from the interfered station. The traffic characteristics might be completely different.	-
82.	Countermeasures- Safety aspects		 The system either avoids to be exposed to the event. Exposure is mainly avoided by planning and/or coordination with other systems. Or the system attempts to be protected against the event. Protection can be achieved by redundancy and/or adaptivity. 	-
83.	Countermeasures can be achieved by-		Company policies Regulation bodies Standard bodies Technical innovations	-
84.	Company policies		This might include prohibition of some wireless products on campus, e.g., Bluetooth or 802.11b. Obviously, applications are moving away from this practice, as they are not suitable for changing topologies.	-
85.	Regulation bodies	$\langle \rangle$	The rules from regulation bodies might include basic coexistence rules, such as LBT or TPC.	-
86.	Standard bodies DES	GNING Estd.	 The most prominent example of a standard-based approach was offered by the legacy IEEE802.2 workgroup with regard to the coexistence between IEEE802.11 (WLAN) and IEEE802.15.1 (Bluetooth) 	-
87.	Technical innovations	-	These look for new solutions with regard to physical and data link layer protocols or with regard to system level (driver) solutions.	-
88.	Countermeasures on physical layer	-	The countermeasures on the physical layer are around the technologies to split up one medium into different channels, e.g., with space, frequency, or code division multiple access (SDMA, FDMA, CDMA).	-
89.	Channel classification	-	Active classification can be done during the course of normal communication, or the devices can	-

			exchange dummy packets with the specific goal of building a classification list. Passive classification is accomplished by listening to channels. Most of	
			today's single-chip transceivers come with two options of passive channel supervision	
90.	Complexity of channel classification	-	As the wireless signal is spatially distributed, the observation of one station has only local significance. If nodes are extensively using power- down modes, they might not be informed about a change in frequency – and thus have to re-register	-
91.	Frequency hopping		Frequency hopping spread spectrum (FHSS) is the simplest spread spectrum technique, which helps to counteract against frequency specific interference on a statistical basis. FHSS uses M different carrier frequencies that are modulated by the source signal.	-
92.	Recent developments of Bluetooth DES		In order to reduce the overall energy consumption due to synchronization times, the Bluetooth low energy technology reduces the number of synchronization channels to four. The adaptivity helps to blacklist a subset of frequencies. The third approach is on the driver- side in order to coordinate the channel access of the different media.	-
93.	Countermeasures on data link layer	<u>-</u>	C The countermeasures on the data link layer are built around the variations of time division multiple access(TDMA), which allows multiple stations use one channel.	-
94.	Disadvantage of centralized approach	_	All slave stations must remain synchronized with the master, which in the general case requires precision timers and regular activity. In case that the synchronization is performed within the communication channel, the topology is limited to star or hierarchical star, i.e., tree topologies.	_

	Security layers of		Physical barrier	
	BIS		Physiological barrier	
95		_	Innate immune system	_
<i>.</i>			Adaptive immune system	
			-Humoral immune system	
			-Cellular immune system	
	Bacterial attacks		Jamming, Collision, Exhaustion and	
			Interrogation	
			Selective forwarding, Sinkhole attacks,	
			Sybil attacks, Wormholes,	
96.		-	Acknowledgement spoofing	-
			HELLO Flood attacks, Buffer overflow	
			attacks	
			Network scanning, Traffic analysis,	
			False alarms	
	Virus infection		Corrupting the routing information,	
			Misdirection	
07			Time synchronization corruption,	
97.			Worms,	-
			Trojan Horse, Backdoor,	
			Hoaxes.	
	Secured protocols		There are a number of secured	
98			protocols design for WSN is the	_
<i>J</i> 0.			Security Protocols for Sensor	
			Networks(SPINS)	
	Components of		µTESLA (micro version of the timed,	
	SPINS		efficient, streaming, loss-tolerant	
99.			authentication protocol)	-
		\sim	SNEP (Secure Network Encryption	
			Protocol)	
	Protective	CMINC	Recognising antigens, Eliminating	
100	mechanisms of	UNING	antigens	-
100.	Artificial Immune	Let d	Adapting to new antigens	
	System(AIS)	Estu.	2000	
	Unit-V : ASSI	STING AN	D THERAPEUTIC EQUIPMENTS	
	Chronic disease		Chronic diseases are defined broadly	-
			as conditions that last 1 year or more	
101.		-	and require ongoing medical attention	
			or limit activities of daily living or	
			both.	
100	Chronic disease		Cancer, heart disease, stroke, diabetes,	-
102.	example	-	and arthritis.	
	Chronic disease		Monitoring is periodic measurement	-
102	monitoring		that guides the management of a	
103.	0	-	chronic or recurrent condition. It can	
			be done by clinicians, patients, or both.	
104	Wireless device		Ultra low power wearable device able	-
104.	for chronic	-	to acquire patient vital parameters,	
			· · · ·	

	disease		causing minimal discomfort and	
	monitoring		allowing high mobility.	
	BAN in Hospital		A BAN in place on a patient can alert	-
105	patients		the hospital, even before they have a	
105.	1)Heart patients	-	heart attack through measuring	
	i)Heart putients		changes in their vital signs	
	2)Diabotic		A BAN on a diabatic patient could	
106	pationts		auto inject insulin through a nump as	
100.	patients	_	soon as their insulin level declines	
	Dhysiological		ECC SnO2 EEC and DDA	
107.	ritysiological	-	ECG,5pO2,EEG and FDA	-
	Elderly patients		Children, the elderly require special	-
108.		-	approaches and an understanding of	
			the physiologic, psychosocial, and	
	5111		physiologic impact of aging.	
	Elderly patient		Conventionally, "elderly" has been	-
	definition		defined as a chronological age of 65	
109.		-	years old or older, while those from 65	
2071			through 74 years old are referred to as	
			"early elderly" and those over 75 years	
			old as "late elderly."	
	Cardiac arrhymia		Improper beating of the heart, whether	
		\sim	irregular, too fast or too slow.	
110.			Cardiac arrhythmia occurs when	-
			electrical impulses in the heart don't	
		\sim	work properly.	
	Cardiac arrhymia		Cardiac arrhythmia monitoring	
111	monitoring		devices are used for monitoring the	
111.	devices		patients at risk or with heart	-
			arrhythmia.	
	Cardiac	CMEMIC	Zimetbaum7	
110	arrhythmia	UNING	TOOR FOTORE	
112.	monitoring	Ectel	2000	-
	devices name	estu.	2000	
	Types of Cardiac		Holter monitor, Event recorder,	
113.	monitoring	-	Mobile cardiac telemetry, Insertable	-
	system		cardiac monitor	
	Arrhythmia		Arrhythmia monitoring refers to tests	
114.	monitoring	-	physicians use to identify the type and	-
	0		the cause of irregular heart rhythms.	
	Multi patient		An efficient system that can monitor	
	monitoring		multiple patients' health parameters	
	system		simultaneously and can effectively	
115.	5	-	deliver the data to a patient	-
			monitoring system where it is stored	
			permanently.	
	Use of multi		The proposed system is used to	
116.	patient	-	measure the physical parameters like	-
	Г			

	monitoring system		body temperature, heart rate, ECG, blood sugar and oxygen level with the help of biosensors using arm microcontroller.	
117.	Neural record	-	Neural recording implants, as a part of BMI, are capable of capturing brain signals, and amplifying, digitizing, and transferring them outside of the body with a transmitter.	-
118.	Multi channel neural record	-	Advances in implantable multi- electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions.	-
119.	Neural signal		Neural signals consist of recordings of potentials that are presumably generated by mixing some underlying components of brain activity.	-
120.	Gait analysis		Gait analysis is the systematic study of animal locomotion, more specifically the study of human motion, using the eye and the brain of observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles.	
121.	Gait analysis uses	GNING Estd	Gait analysis is a way to assess the dynamic posture and coordination during movement. This analysis is a means to evaluate, record, and make any necessary corrections for a smooth gait.	-
122.	Abnormal gait	-	Abnormal gait or a walking abnormality is when a person is unable to walk in the usual way.	-
123.	Sports medicine	-	Sports medicine is a branch of medicine that deals with physical fitness and the treatment and prevention of injuries related to sports and exercise.	-
124.	Example of sports medicine	-	Physical therapist, Certified athletic trainer, nutritionist	-
125.	Electronic pill	-	A electronic or digital pill is a pharmaceutical dosage form that contains an ingestible sensor inside of a pill.	-

Placement Questions				
126.	Technical challenges of BAN	-	Sensor design Biocompatibility Energy supply Optimal node placement Number of nodes System security	-
127.	Criteria for BAN architectural design		Miniaturization Low cost Low power consumption Wireless communication Secured and reliable protocols Intelligent Expandable Flexible Programmable	_
128.	BSN and healthcare		Ease for sensor integration Monitoring patients with chronic diseases Monitoring Hospital patients Monitoring elderly patients	_
129.	Physiological parameter (BSN sensor type)		Blood pressure(Implantable/wearable mechanoreceptor) ECG, cardiac output (Implantable/wearable mechanoreceptor and ECG sensor Body temperature(wearable thermistor) Urine output-Renal failure(Implantable bladder pressure /volume sensor)	-
130.	Biochemical parameter(BSN DES sensor type)	<u>GNING</u>	Adrenocorticosteroids-hypertension (Implantable biosensor) Troponin, creatine kinase-Heart disease(Implantable biosensor) Inflammatory markers, White cell count, pathogen metabolites – Infectious diseases (implantable biosensor) Urea, creatinine, potassium-Renal failure(implantable biosensor)	_
131.	Processor in BAN (Microcontroller)	-	To optimize the performance and power consumption of the MCU, the MSP430 (Texas instrument) provides different modes of operation and modular disabling/enabling controls.	-
132.	Radio transceiver	-	To cater for the high bandwidth required for physiological sensors and ease the interface with other wireless sensors, the Chipcon CC2420 is used for the BSN	-

			node	
			As an IFFF 802 15 <i>A</i> compliant chinset	
			As an IEEE 802. 15. 4 compliant chipset,	
			the Chipcon CC2420 allows the BSN hode	
			to communicate with other wireless	
			sensor networks.	
	Flash memory		The BSN node is designed with an on –	
			board flash memory for enabling high-	
			speed sampling nd dynamic program	
133.		-	updates.	-
			For this purpose, a 4-megabit Atmel	
			At45DB041B serial flash memory module	
			is used.	
	Board connector		The connectors are wired similarly to a	
			bus where signals are designed to pass	
134		_	through from one side of the board to	_
104.			another in order to provide the stackable	
			functionality	
	Antonno		Automatic and he appeidented maximum and	
	Antenina		Antennas can be considered reciprocal	
			devices that convert currents into neid	
135.			and fields into current. The BSN node is	-
			designed with only the mounting	
			holes(Ant and GND) for the user to try	
		\sim	different antenna designs.	
	RF communication in		A radio frequency (RF) signal refers to a	
136	body		wireless electromagnetic signal used as a	_
100.			form of communication, if one is	
			discussing wireless electronics.	
	Antenna design		An in-body antenna needs to tunable with	
		\sim	an intelligent transceiver and routine. This	
137.			will enable the antenna coupling circuit to	-
	DEC	27 A 11 A 127	be optimized and the best signal strength	
	DES	GNING	obtained.	
	Antenna testing	- and all	Before designing a matching network for	
	0	ESTA.	the antenna/transceiver interface it is	
138.		_	necessary to measure the impedance of	-
			the antenna within a representative	
			medium.	
	Implementation of		IEEE 802 11 is a set of media access	
	Wireless		control and physical layer specification for	
	communication		implementing wireless networking	
130	communication		computer communication	
139.		-	It was founded in 1087 to begin	-
			atandardization of annoad anostrum	
			MI A No for use in the ISM hards	
	000 11 1.:-1		$\frac{1}{1}$	
	802.11 nigh rate		IEEE 802.11b is a high rate standard	
140.	standard	-	approved in 1999.It provided new data	_
			rate capabilities of 11 Mbps, 5.5 Mbps in	
			addition to the original 2 Mbps and 1	

			Mbps user rates of IEEE 802.11	
141.	Intrinsic interference	-	All nodes follow the same channel access mechanisms, i.e., LBT or back off strategies. All nodes may come with similar traffic characteristics.	-
142.	Extrinsic interference	-	The traffic characteristics might be completely different. So predictions of the future behavior are not possible. Digital systems tend to be much more event- driven.	-
143.	Star-mesh hybrid network		Network topology connecting a mesh network with one or more star networks or several star networks with each other. A mixed star and mesh network combines the simplicity of the singlehop star topology with the extendibility and flexibility of the multi-hop mesh topology	-
144.	Limit of Detection (LOD)		The lowest detectable analyte concentration, commonly defined as the concentration equivalent of three standard deviations of the y-intercept of the calibration working curve.	-
145.	Biosensor		The term "biosensor" strictly refers to chemical sensors where a biological sensing element such as an enzyme or antibody is used to couple the analyze concentration in a sample matrix to a transducer	-
146.	Types of topology	Estd.	 Physical Topology Logical topology 	-
147.	Characteristics of network topology	-	 Latency Robustness Capacity and complexity of data routing Data processing 	-
148.	Advantages of Muti- sensor system	-	Improved Signal-to-Noise Ratio (SNR) Enhanced robustness and reliability in the event of sensor failure Extended parameter coverage Integration of independent features and prior knowledge Increased dimensionality of the measurement	-

	Contextual sensing	the ability to detect contextual	
149.		information	
		and present it to the user to augment the	-
		user's sensory system;	
	The Five W's of	1. Who – the identity of the user or	
	Context	other people in the environment	
		2. What – human activity and	
		interaction in current systems	
150		3. Where – the environment within	
150.		which the activity is taking place	-
		4. When – timestamp of the capture	
		records	
		5. Why – person's affective states	
		and intension	
Faculty Prepared		Dr. J. Alphas Jeba Singh Signature	
		Associate Professor,	
		Department of BME.	

HoD