

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

			MU	UST KN	OW CONCEPTS	MKC	
DEPT - AI&DS					2021-2	2	
Course Code & Course Name		:		19ADCO5 / Introduction to Da	ata Science		
Year/Sem/Sec		:	II / III	Ι			
S.No.	S.No. Term			Notation (Symbol)	Concept / Definition / Me Units / Equation / Expr	eaning / ession	Units
				Unit-I	: Introduction		
1.	Data science			-	Data science involves gaining the k from gathered data using different	knowledge methods.	
2.	Data scientist			-	As a data scientist, you take a compresearch it, gather as a data, and we the problem.	plex problem, e use to solve	
3.	Data Acquisiti	ion		-	It is a process of analysing the real physical condition and converts int values, which can be manipulated l	world to numerical by computer.	
4.	Data preparation			-	Data preparation is a act of manipu data into a form that can readily an be analysed.	lating raw d accurately	
5.	Data cleaning			-	Data cleaning is a process of identi correcting corrupt, incorrect and in from reference set or table.	fying and relevant data	
6.	Data transform	nation			Data transformation is a process of data from one format or structure in format or structure.	converting nto another	
7.	Handling outli	iers			Outliers are often used for the fraud and finding the malicious activities happens on the field.	d detection which	
8.	Data integration			-	In this, the data scientist ensures th accurate and reliable.	e data is	
9.	9. Data reduction]	Data reduction is the transformatio numerical or alphabetical digital in derived experimentally into a corre simplified form.	n of formation ected and	
10.	Data mining				It is the process of extracting the re information from the larger set of r	equired aw data.	
11.	Model buildin	g			In this the process involves setting collecting data and finding a statist mathematical or a stimulation mod	up ways of ical, el to gain	

		understanding and make predications.
12.	clustering	It is a task of dividing the population or data points into number of groups. It is basically a collection of objects on the basis of similarity and dissimilarity between them.
13.	Essential data science skills	 statistical analysis machine learning computer science and programming data storytelling business intuition analytical thinking critical thinking inquistiveness interpersonal skills
14.	Statistical analysis	keen sense of pattern detection and normally detection.
15.	Machine learning	Implement algorithms and statistical models to enable a computer automatically learn from data.
16.	Computer science and programming	Applying the principle of AI, database system and software engineering. known to Write the programs like java, python and SQL programming languages.
17.	Data storytelling	Data storytelling is the practice of building a narrative around a set of data and its accompanying visualizations.
18.	Business intuition	Connect stakeholders to gain a full understanding of the problem they are looking to solve.
19.	Analytical thinking	Find analytical solutions to abstract business issues.
20.	Critical thinking	Apply objective analysis of facts before coming to a conclusion.
21.	Inquistiveness	Look beyond what's on the surface to discover patterns and solutions within the data
22.	Interpersonal skills	Communicate across a diverse audience across all levels of an organization.
23.	Fundamental steps to complete a data analytics project	Step 1: understand the businessStep 2: get your dataStep 3: explore and clean your dataStep 4: enrich your datasetStep 5: build helpful visualizationsStep 6: get predictiveStep 7: iterate
24.	Applications for data science	1. fraud and risk detection2. healthcare3. gaming4. E-commerce5. banking6. transport

		7. education	
25.	Jobs for data science	1. data scientists2. data analyst3. data engineering4. business intelligence specialists5. data architects	
	Unit-II : Dat	a Collection and Data Pre-Processing	
26.	Data collection	Data collection is the process of accumulating data that's required to solve a problem statements.	
27.	Steps to collect the data	 identify a problem statement determine what data type is needed decide on data sources create a timeline collect your data 	
28.	Data pre-processing	Data preparation plays an important role in your workflow. You need to transform the data in a way that a computer would be able to work with it.	
29.	Steps in data pre- processing	 data cleaning Missing data Noisy data data transformation Normalization Attribute selection Discretization Concept hierarchy generation data reduction Data cube aggregation Attribute subset selection Numerosity reduction Dimensionality reduction 	
30.	Missing data	You may also notice that some important values are missing. These problems arise due to human factor, program errors and other reasons.	
31.	Noisy data	A large amount of additional meaningless data is called noisy data.	
32.	Normalization	Normalization is a technique often applied as part preparation for machine leaning. It is used while the features have different ranges.	
33.	Attribute selection	If you construct a new features combining the given features in order make the data mining process more efficient, it is called as attribute selection.	
34.	Discretization	Data discretization refers to a method of converting continuous data into discrete buckets by grouping it.	
35.	Concept hierarchy	Concept hierarchy generation based on the	

	generation	number of distinct values per attribute.	
36.	Aggregation	In the case of data aggregation, the data is pooled together and presented in a unified format for data analysis.	
37.	Numerosity reduction	Numerosity reduction is a method of data reduction that replaces the original data by a smaller form of data representation.	
38.	Types of numerosity reduction	 parametric non- parametric 	
39.	Dimensionality reduction	Dimensionality reduction is the transformation of data from a high-dimensional space into low- dimensional space.	
40.	Data cleansing	Data cleaning is a process of identifying and correcting corrupt, incorrect and irrelevant data from reference set or table.	
41.	Steps involved for data cleansing	 removal of unwanted observations fixing structural errors managing unwanted outliers handling missing data 	
42.	Tools for data cleansing	 Openrefine Trifecta wrangler TIBCO clarity Cloudingo IBM infosphere quality stage 	
43.	Components of data integration	 Data migration Enterprise application integration (EAI) Master data management Data aggregation 	
44.	Types of data aggregation	 data federation data warehousing 	
45.	Data federation	Data is combined into virtual database.	
46.	Data warehousing	Data is combined into a physical database.	
47.	Advantages of data warehousing	 improved business intelligence rapid access to data historical intelligence 	
48.	Disadvantages of data warehousing	1. cost of scaling 2. maintenance cost	
49.	Challenges associated with MDM strategy	 complexity overlap governance standards 	
50.	Categories of data integration	 analytical data integration (AnDI) operational data integration (OnDI) hybrid data integration (HyDI) 	
	Uni	t III- Exploratory Data Analytics	1
51.	Descriptive statistics	A population is the group to be studied, and population data is a collection of all in the	

		population.	
52.	Descriptive measures	Descriptive measures of populationare called parameters and typically using greek letters. The population mean is μ (mu).	μ
53.	Mean	The arithmetic mean of a variable, often called as average, is computed by adding up all the values and dividing by the total numbers of values.	
54.	Medium	The median of a variable is the middle of the data set when the data are sorted in order form least to greatest.	
55.	Mode	The mode is the value that appears frequently in the data set.	
56.	Range	The range is the difference between the highest and lowest values in a set of numbers.	
57.	Variance	The variance is the average of the squared differences from the mean.	
58.	Standard deviation	In statistics, the standard deviation is a measure of the amount of variance or dispersion of set of values.	
59.	Central limit theorum	In this theorem, the regardless of the shape of our population, the sampling distribution of the sample mean will be normal as the sample size increases.	
60.	Coefficient of variation	The coefficient of variation (CV) is a measure of relative variability. It is the ratio of the standard deviation to the mean.	
61.	Variability	Variability refers to how spread out; that is, it refers to the amount of spread of the scores around the mean.	
62.	Graphical representation	A graph is defined as a chart with statistical data, which represented in the form of curves or lines drawn across the coordinate point plotted on the surface.	
63.	Types of graphical representation	 line graphs bar graphs histograms line plots frequency table etc 	
64.	Advantages of graphical representation	 It makes data more easily understandable It saves time It makes the comparison of data more efficient. 	
65.	Pie charts	A pie chart is a circular statistical graphic, which is divided into slices to illustrate numerical proportion.	
66.	Bar charts	A bar chart is a chart which represent the data in the rectangular box in the vertical position.	

67.	Histograms		A histogram is a bar graph like representation of data that buckets a range of outcomes into	
			columns along the x-axis. Skewness is a measure of the symmetry of a	
68.	Skewness		distribution.	
	— (1)		1. positive skewed or right-skewed	
69.	Types of skewness		2.negative skewed or left-skewed	
70	Variation		Kurtosis refers to the degree of presence of	
70.	Kurtosis		outliers in the distribution.	
			The excess kurtosis is used in statistics and	
71	Excess kurtosis		probability theory to compare the kurtosis is	
71.			coefficient with that normal distribution. It can	
			be positive, negative or near to zero.	
70			1. lepokurtic	
72.	I ypes of Kurtosis		2. platykurtic	
			3. Inesokuruc	
72	Divot tables		They error and rearrange statistics in order to	
75.	Prvot tables		draw attention to useful information	
			1 two way ANOVA with replication	
74.	Two ways of ANOVA		1. two way ANOVA with replication 2 two way ANOVA without replication	
			The population must be close to a normal	
			distribution	
75	Assumptions for two way ANOVA		 Samples must be independent 	
75.			 Bonulation variances must be equal 	
			 Groups must have equal sample sizes 	
			• Groups must nave equal sample sizes.	
	U	NII -IV	Model Development	[
76.	Regression		It estimates the relationship between variables	
77.	Types of linear regression		Simple linear regression	
			Multiple linear regression	
78.	Error function		It is the distance between current state and ideal	
			state	
70	Maan Squarad Error	MSE =	alculated by dividing PSS by the number of	
79.	Mean Squared Error	RSS / n	data values	
			It is the square root of mean squared error and is	
80	Root Mean Squared Error		more suitable when large errors are particularly	
00.	Root Mean Squared Error		undesirable	
			It is the measure of errors between paired	
81.	Mean Absolute Error		observations expressing the same phenomenon	
00	Ondine and Least Company		It is a method in linear regression for estimating	
82.	Ordinary Least Squares		the unknown parameters by creating a model	
			Certain features from the dataset are selected as	
83.	Feature Selection		the data is huge and multi dimensional used to	
			better understand the data	
			It is a phenomenon in which one feature variable	
84.	Multi collinearity		in a regression model is highly linearly	
			correlated with another feature variable	

85.	Null Hypothesis	It is a type of hypothesis used in a statistics that proposes that there is no difference between certain characteristics of a population
86.	Forward selection	It is a iterative method in which we start with having no feature in the model
87.	Backward selection	It is a feature selection technique while building a machine learning model
88.	Representation Learning	It is an area of research that focuses on how to learn compact, numerical representations for different sources of signal
89.	Data Visualization	It is the process of translating large data sets and metricsninto charts, graphs and other visuals
90.	Data Splitting	It is the acts of partitioning available data into two portions, usually for cross-validatory purposes
91.	Data splitting purpose	There are two portions.One portion is used to develop a Predictive model and another portion is to evaluate the model's performance
92.	Benefits of Data Visualization	 Increases the speed of decision making Solves data inefficiencies an absorb vast amounts of data presented in visual formats Identifies errors and inaccuracies in data quickly Promotes storytelling and Conveys the right message to the audience Optimize and instantly retrieve data via tailor- made reports Explore business insights and achieve business goals
93.	Data Science Process Flow	Scatter Plots , Hexbins Plot , Heat map , Box plot , Pair Plot , Bar Chart
94.	Histogram	It is a graphical representation that organizes a group of data points into specified ranges
95.	Characteristics of a Histogram	 Used to display Continuous data in a categorical form No gaps between the bars , Unlike a bar graph Width of the bins is equal
96.	Linear Regression	It is a linear approach fo rmodelling the relationship between a scalar response and one or more explanatory Variables
97.	Area Under Curve	It is a measure of the ability of a classifier to distinguish between classes and is used as a summary of ROC curve
98.	Sensitivity	It is a metric that evaluates a model's ability to predict true positives of each available category
99.	Specificity	It is metric that evaluates a model's ability to predict true negatives of each available category
100.	Precision	It indicates the rate at which positive predictions

		are correct	
	I	UNIT-V Model Evaluation	
101.	Model Evaluation	Model Evaluation is the Subsidiary part of the model development process. It is the phase that is decided whether the model performs better.	
102.	Generalization	It refers to your model's ability to adapt properly to new , previously unseen data	
103.	Bias	Bias is the average squared difference between prediction and true values. It measure how good your model fits the data	
104.	Variance	If you train your data on training data and obtain a very low error, upon changing the data and then training the same previous model, you experience a high error, this is variance.	
105.	Regularization	It is a method to avoid high variance and overfitting as well as to increase generalization	
106.	Confusion Matrix	Confusion matrix is an N x N matrix , where N represents the number of categories in the target variable	
107.	Cost Of Classification	Cost of Classification is a measure of computing cost for classification models	
108.	Accuracy	It is the ratio of correct predicted values over the total predicted values	
109.	True Positive rate	$TPR = \frac{TP}{TP + FN}$	
110.	False Negative Rate	$FNR = \frac{FN}{TP + FN}$	
111.	True Negative Rate	$TNR = \frac{TN}{FP + TN}$	
112.	False Positive Rate	$FPR = \frac{FP}{FP + TN}$	
113.	Precision	$Precision = \frac{TP}{FP + TP}$ It is an evaluation metric which tells us out of all positive predictions , how many are actually positive	
114.	Recall	$Recall = \frac{TP}{FN + TP}$	
115.	F1 Score	$F1 = \frac{1}{\frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}}$ F1 is the harmonic mean of precision and recall	

116.	Log Loss	Log Loss is the negative average of the log of corrected-predicted probabilities for each instance
117.	AUC-ROC	Area Under the Curve - Receiver Operating characteristics is an evaluation metric for binary classification which gives trade-off between false positive rate and true positive rate
118.	Overfitting	Refers to a model can't generalize or fit well on unseen data set.
119.	Underfitting	Refers to a model that can neither model the training dataset nor generalize to new dataset.
120.	Ridge Regression	It is a model tuning method that is used to analyze any data that suffers from multicollinearity
121.	To Prevent Overfitting	 You need to add regularization in case of Linear and SVM models. In decision tree models you can reduce the maximum depth. While in Neural Networks, you can introduce dropout layer to reduce overfitting
122.	To Prevent Underfitting	 Increase model complexity Increase the number of features , performing feature engineering Remove noise from the data Increase the number of epochs or increase the duration of training to get better results
123.	Logistic Regression	It is a supervised machine learning algorithm used to predict a dependent
124.	Hyperparameter	These are parameters whose values control the learning process and determine the values of model parameters that a learning algorithm ends up learning
125.	Parameter	It is a function argument that could have one of range of values
		Placement Questions
126.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer $= x + 4 = 15$.
127.	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
128.	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.
129.	Look at this series: 53, 53, 40, 40, 27, 27,	In this series, each number is repeated, then 13 is subtracted to arrive at the next number.

130.	Look at this series: 1.5, 2.3, 3.1, 3.9,	In this simple addition series, each number increases by 0.8.
131.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer = $x + 4 = 15$.
132.	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
133.	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.
134.	$(112 \text{ x } 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4 = 112 \text{ x } 10^4 = 1120000 = 7000022^416$
135.	It was Sunday on Jan 1, 2006. The day of the week Jan 1, 2010 is	On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.
136.	Today is Monday. After 61 days, it will be:	Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday.
137.	If 6 th March, 2005 is Monday,The day of the week on 6 th March, 2004 is	The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6 th March, 2005 will be 1 day beyond the day on 6 th March, 2005. Given that, 6 th March, 2005 is Monday. ∴ 6 th March, 2004 is Sunday (1 day before to 6 th March, 2005).
138.	The days inx weeks x days?	x weeks x days = $(7x + x)$ days = $8x$ days.
139.	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	The year 2004 is a leap year. It has 2 odd days. \therefore The day on 8 th Feb, 2004 is 2 days before the day on 8 th Feb, 2005. Hence, this day is Sunday.
140.	The greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.
141.	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers	Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$

	is:		
142.	$(112 \text{ x } 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4 = 112 \text{ x } 10^4 = 1120000 = 7000022^4 16$	
143.	It was Sunday on Jan 1, 2006.The day of the week Jan 1, 2010 is	On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.	
144.	Today is Monday. After 61 days, it will be:	Each day of the week is repeated after 7 days.So, after 63 days, it will be Monday.∴ After 61 days, it will be Saturday.	
145.	If 6 th March, 2005 is Monday, The day of the week on 6 th March, 2004 is	 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005). 	
146.	The sin x weeks x days?	x weeks x days = $(7x + x)$ days = $8x$ days.	
147.	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday. 	
148.	Find the greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.	
149.	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:	Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$	
150.	Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:	Let the speeds of the two trains be x m/sec and y m/sec respectively. Then, length of the first train = 27x meters, and length of the second train = 17y meters. 27x + $\therefore \frac{17y}{x+y} = 23$ $\Rightarrow 27x + 17y = 23x + 23y$ $\Rightarrow 4x = 6y$ $\Rightarrow \frac{x}{y} = \frac{3}{2}$.	

Faculty Team Prepared

Signatures

1. Dr.P.Srinivasan

HoD