21BSS21 – Algebra and Calculus Unit - I Matrices

Topic of Lecture : Characteristic Equation

Introduction :

The **characteristic equation** is the **equation** which is solved to find a matrix's eigenvalues, also called the **characteristic polynomial**.

Prerequisite knowledge for Complete understanding and learning of Topic : Characteristic equation (calculus), used to solve linear

differential **equations**. **Characteristic equation**, the **equation** obtained by equating to zero the **characteristic polynomial** of a matrix or of a linear mapping. **Characteristic equations**, auxiliary differential **equations**, **used** to solve a partial differential **equation**.

Detailed content of the Lecture:

Characteristic Equation

For 2×2 matrix

If A is a square matrix of order 2, then its characteristic equation can be written as

 $\lambda^2 - s_1 \lambda + s_2 = 0$ where

 S_1 = sum of the main diagonal elements

 S_2 =Determinant value of A=|A|

For 3×3 matrix

If A is a square matrix of order, then its characteristic equation can be written as

 $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements

 $S_{2} = \text{sum of minors of main diagonal elements} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ $S_{3} = \text{Determinant value of } A = |A|$

Problems based on Characteristic Equation

1. Find the Characteristic Equation of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

solution : Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

The Characteristic Equation of A is $\lambda^2 - s_1 \lambda + s_2 = 0$ where

 S_1 = sum of the main diagonal elements =1+2=3

S₂=Determinant value of A=
$$|A| = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix}$$

=2-0=2
Hence the required Characteristic Equation is $\lambda^2 - 3\lambda + 2 = 0$
2. Find the Characteristic Equation of the matrix $\begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$
solution : Let A= $\begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$
The Characteristic Equation of A is $\lambda^3 - s_1\lambda^2 + s_2\lambda - s_3 = 0$ where
S₁= sum of the main diagonal elements =2+1+(-4) = -1
S₂= sum of minors of main diagonal elements = $\begin{vmatrix} 1 & 3 \\ 2 & -4 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ -5 & -4 \end{vmatrix} + \begin{vmatrix} 2 & -3 \\ 3 & 1 \\ -5 & 2 & -4 \end{vmatrix}$
= (-4-6)+(-8+5)+(2+9)
= -2
S₃=Determinant value of A= $|A| = \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{vmatrix}$
= 2(-4-6)-(-3)(-12+15)+1(6+5)
= 0
Hence the required Characteristic Equation is $\lambda^3 + \lambda^2 - 2\lambda = 0$
Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Calculus with Early	Cengage	
1.	James Stewart	Transcendental	Learning, New	1.1-1.10
		Functions	Delhi	

Topic of Lecture : Eigen Values and Eigen Vectors of Matrix
Introduction :
Eigen values:
Let A= a_{ij} be a square matrix. The Characteristic Equation of A is $ A - \lambda I = 0$. The roots
of the Characteristic Equation are called Eigen values of A.
Eigenvectors:

Let A= a_{ij} be a square matrix of order n .If there exists a non zero vector X= x_3

 x_2

Such that $AX = \lambda X$, then the vector X is called an Eigen vector of A corresponding to the Eigen value λ .

Prerequisite knowledge for Complete understanding and learning of Topic :

Working rule to find Eigen values and Eigen vectors

Step-1 Find the Characteristic Equation $|A - \lambda I| = 0$

Step-2 Solving the Characteristic Equation, we get Characteristic roots called Eigen values.

Step-3 To find Eigen vectors, solve $(A - \lambda I) X = 0$ for the different values of λ .

Detailed content of the Lecture:

Problems based on Non-symmetric matrices with non-repeated Eigen values

1. Find the Eigen values and Eigen vectors of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$

	<u>[</u> 1	0	-1]
sol: Let A =	=1	2	1
	L2	2	3]

Step-1 To find the Characteristic Equation

The Characteristic Equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements =1+2+3=6

S₂= sum of minors of main diagonal elements $=\begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix}$ =(6-2)+(3+2)+(2-0)=4+5+2=11

S₃=Determinant value of A=
$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{vmatrix}$$

=1(6-2)-0(3-2)+(-1)(2-4)=6

Hence the required Characteristic Equation is $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$

Step-2 To find the roots of the Characteristic Equation

by using calculator, the Eigen values are 1,2,3

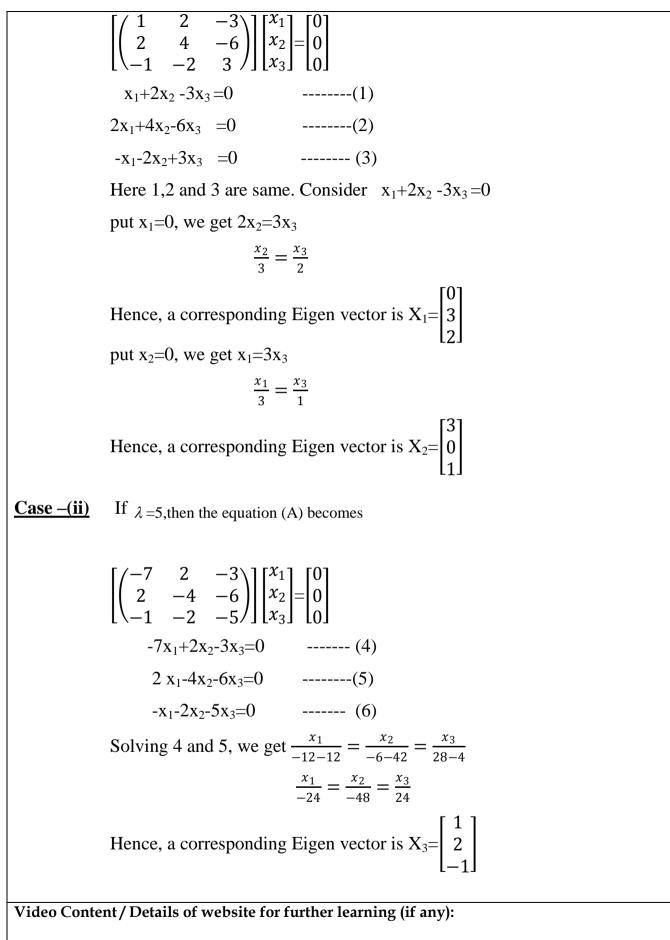
Step-3 To find the Eigen vectors

To find the Eigen vectors, solve (A- λ I) X=0.

$$\begin{bmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{aligned} -2x_{1}+0x_{2}\cdot x_{3}=0 & -\cdots = (7) \\ x_{1}-x_{2}+x_{3}=0 & -\cdots = (8) \\ 2x_{1}+2x_{2}+0x_{3}=0 & -\cdots = (9) \\ \text{Solving 8 and 9, we get } \frac{x_{1}}{0-2} = \frac{x_{2}}{2} = \frac{x_{3}}{2} \\ \frac{x_{1}}{-2} = \frac{x_{2}}{2} = \frac{x_{3}}{4} \\ \text{Hence, a corresponding Eigen vector is } X_{3}=\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix} \\ \text{Problems based on Non-symmetric matrices with repeated Eigen values} \\ \text{I. Find the Eigen values and Eigen vectors of } \begin{bmatrix} -2 & 2 & -3\\ 2 & 1 & -6\\ -1 & -2 & 0 \end{bmatrix} \\ \text{sol: Let } A = \begin{bmatrix} -2 & 2 & -3\\ 2 & 1 & -6\\ -1 & -2 & 0 \end{bmatrix} \\ \text{Step-1} \qquad \text{To find the Characteristic Equation} \\ \text{The Characteristic Equation of A is } \lambda^{3} - s_{1}\lambda^{2} + s_{2}\lambda - s_{n} = 0 \text{ where} \\ s_{1} = \text{sum of the main diagonal elements } = \frac{1}{-2} - \frac{-6}{0} | + | -1 - \frac{-3}{0} | + | -2 - \frac{2}{1} | \\ = (0-12) + (0-3) + (-24) = -12 \cdot 3 \cdot 6 = -21 \\ s_{2} = \text{sum of minors of main diagonal elements } = \frac{1}{-2} - \frac{-6}{0} | + | -1 - \frac{2}{0} - \frac{3}{1} | + | -2 - \frac{2}{1} | \\ = (0-12) + (0-3) + (-24) = -12 \cdot 3 \cdot 6 = -21 \\ s_{3} = \text{Determinant value of } A = | A = \begin{vmatrix} 2^{-2} & 2 & -3\\ 2 & 1 & -2 & 0 \end{vmatrix} \\ = -2(0-12) - 2(0-6) + (-3) (-4+1) - 45 \\ \text{Hence the required Characteristic Equation is } \lambda^{3} + \lambda^{2} - 21\lambda - 45 = 0 \\ \text{Step-2} \qquad \text{To find the roots of the Characteristic Equation} \\ \text{by using calculator , the Eigen values are } -3, -3, 5 \\ \text{Step-3} \qquad \text{To find the Eigen vectors} \\ \text{Cond} \qquad \begin{bmatrix} (-2 - \lambda & 2 & -3\\ 2 & 1 - \lambda & -6\\ -1 & -2 & 0 - \lambda \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ x_{3} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ x_{3} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} \\ \text{Curve (b)} \quad \text{ff.} \end{cases}$$

<u>Case –(i)</u> If $\lambda = -3$, then the equation (A) becomes



https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	1.20-1.35

Topic of Lecture : Eigen Values and Eigen Vectors of Matrix

Introduction :

Eigen values:

Let A= a_{ij} be a square matrix. The Characteristic Equation of A is $|A - \lambda I| = 0$. The roots

 x_2

of the Characteristic Equation are called Eigen values of A.

Eigenvectors:

Let A= a_{ij} be a square matrix of order n .If there exists a non zero vector X= x_3^-

Such that $AX = \lambda X$, then the vector X is called an Eigen vector of A corresponding to the Eigen value λ .

Prerequisite knowledge for Complete understanding and learning of Topic :

Working rule to find Eigen values and Eigen vectors

Step-1 Find the Characteristic Equation $|A - \lambda I| = 0$

Step-2 Solving the Characteristic Equation, we get Characteristic roots called Eigen values.

Step-3 To find Eigen vectors, solve (A- λ I) X=0 for the different values of λ .

Detailed content of the Lecture:

Problems based on Symmetric matrices with non-repeated Eigen values

2. Find the Eigen values and Eigen vectors of 2

sol: Let A =
$$\begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$

Step-1 To find the Characteristic Equation

The Characteristic Equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements =7+6+5=18

S₂= sum of minors of main diagonal elements = $\begin{vmatrix} 6 & -2 \\ -2 & 5 \end{vmatrix} + \begin{vmatrix} 7 & 0 \\ 0 & 5 \end{vmatrix} + \begin{vmatrix} 7 & -2 \\ -2 & 6 \end{vmatrix}$

=(30-4)+(35-0)+(42-4)=99

$$\begin{split} & S_{3} = \text{Determinant value of } A_{=} \left| A_{1} \right| = \left| \begin{matrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{matrix} \right| = 7(30 - 4) + 2(-10 - 0) + 0() = 162 \\ & \text{Hence the required Characteristic Equation is } \lambda^{2} - 18\lambda^{2} + 99\lambda - 162 = 0 \\ & \text{Step-2} & \text{To find the roots of the Characteristic Equation} \\ & \text{by using calculator, the Eigen vectors} \\ & \text{To find the Eigen vectors} \\ & \text{To find the Eigen vectors, solve } (A - \lambda I) X = 0. \\ & \left[\begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right] \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} 4 & -2 & 0 \\ 0 & -2 & 2 \\ 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} x_{1} - 2 & 0 \\ 0 & -2 & 2 \\ 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} x_{1} - 2 & 0 \\ 0 & -2 & -1 \\ x_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ & \text{-constant of } \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \\ \\ & \text{Hence, a corresponding Eigen vector is } X_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \\ \\ & \text{Hence, a corresponding Eigen vector is } X_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \\ \\ & \text{Case -(ii)} \quad \text{If } \lambda = 6, \text{then the equation } (\Lambda) \text{ becomes} \\ & \left[\begin{pmatrix} 1 & -2 & 0 \\ 0 & -2 & -1 \\ x_{3} \end{bmatrix} \right] \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ x_{1} - 2x_{2} + 0x_{3} = 0 \\ x_{1} - 2x_{2} + x_{3} = 0 \\ x_{1} - 2x_{2} - \frac{x_{3}}{4 - 0} \\ x_{1} - 2x_{2} + 0x_{3} = 0 \\ x_{1} - 2x_{2} + 0x_{3} = 0 \\ x_{1} - 2x_{2} - \frac{x_{3}}{4 - 0} \\ x_{1} - 2x_{2} + 0x_{3} = 0 \\ x_{1} - 2x_{2} - \frac{x_{3}}{4 - 0} \\ x_{1} - 2x_{2} - \frac{x_{3}}{4 - 0} \\ x_{1} - 2x_{2} - \frac{x_{3}}{4 - 0} \\ x_{1} - 2x_{2} - \frac{$$

Hence, a corresponding Eigen vector is $X_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

If $\lambda = 9$, then the equation (A) becomes Case –(iii)

$$\begin{bmatrix} \begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2x_{1}-2x_{2}+0x_{3}=0 \qquad ------(7)$$

$$-2x_{1}-3x_{2}-2x_{3}=0 \qquad ------(8)$$

$$0x_{1}-2x_{2}-4x_{3}=0 \qquad ------(9)$$
Solving 8 and 9, we get $\frac{x_{1}}{12-4} = \frac{x_{2}}{0-8} = \frac{x_{3}}{4-0}$

$$\frac{x_{1}}{2} = \frac{x_{2}}{-2} = 1$$
Hence, a corresponding Eigen vector is $X_{3}=\begin{bmatrix} 2\\ -2\\ 1 \end{bmatrix}$

Problems based on Symmetric matrices with repeated Eigen values

1 1 **1.** Find the Eigen values and Eigen vectors of $\begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}$ 0

sol: Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Step-1 To find the Characteristic Equation

The Characteristic Equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements =0+0+0=0

S₂= sum of minors of main diagonal elements = $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ =(0-1)+(0-1)+(0-1)=-3

S₃=Determinant value of A=
$$|A| = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0(0-1) - 2(0-1) + 1(1-0) = 2$$

Hence the required Characteristic Equation is $\lambda^3 - 0\lambda^2 - 3\lambda - 2 = 0$

Step-2 To find the roots of the Characteristic Equation

by using calculator, the Eigen values are -1,-1,2

Step-3 To find the Eigen vectors

To find the Eigen vectors, solve (A- λ I) X=0. $\begin{bmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \begin{pmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \dots$ (A) Case –(i) If $\lambda = 2$, then the equation (A) becomes $\begin{bmatrix} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $-2x_1+x_2+x_3 = 0$ -----(1) $x_1 - 2x_2 + x_3 = 0$ -----(2) $x_1 + x_2 - 2x_3 = 0$ ------ (3) Solving 1 and 2, we get $\frac{x_1}{1+2} = \frac{x_2}{1+2} = \frac{x_3}{4-1}$ $\frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{1}$ Hence, a corresponding Eigen vector is $X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ If $\lambda = -1$, then the equation (A) becomes <u>Case –(ii)</u> $\begin{bmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $x_1 + x_2 + x_3 = 0$ -----(4) $x_1+x_2+x_3 = 0$ -----(5) $x_1 + x_2 + x_3 = 0$ ------ (6) Here Equation 4,5 and 6 are same. $x_1+x_2+x_3 = 0$ put $x_1=0$, we get $\frac{x_2}{1} = \frac{x_3}{-1}$ Hence, a corresponding Eigen vector is $X_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ <u>Case –(iii</u>) To find pairwise orthogonal vector Let $X_3 = \begin{bmatrix} l \\ m \\ ... \end{bmatrix}$ as X_3 is orthogonal to x_1 and x_2

therefore , l+m+n=0(7)

$$0l+m-n=0$$
(8)
Solving 7 and 8, we get $\frac{l}{-1-1} = \frac{m}{0+1} = \frac{n}{1-0}$
 $\frac{l}{-2} = \frac{m}{1} = \frac{n}{1}$
Hence, a corresponding Eigen vector is $X_3 = \begin{bmatrix} 2\\ -1\\ -1 \end{bmatrix}$
Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	1.20-1.35

Topic of Lecture : Properties of Eigen values and Eigen vectors

Introduction : The eigen functions represent stationary states of the system i.e. the system can achieve that state under certain conditions and **eigenvalues** represent the value of that property of the system in that stationary state

Prerequisite knowledge for Complete understanding and learning of Topic : The eigenvalue problem is related to the homogeneous system of linear equations, as

we will see in the following discussion. To find the **eigenvalues** of n × n matrix A we rewrite

(1) as. Ax= λ Ix E3. or by inserting an identity matrix I equivalently. (A- λ I)x=0.

Detailed content of the Lecture:

1. Find the sum and product of the Eigen values of the matrix $\begin{vmatrix} 1 & -1 & 1 \end{vmatrix}$

 $\operatorname{rix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & - \end{bmatrix}$

Sol: Sum of the eigenvalues = sum of the diagonal elements

= - 1 - 1 - 1 = - 3

Product of the eigen values = Determinant value of A = |A|

$$= \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$$

2. The product of two eigen values of of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third

Eigen value.

Sol: Let the eigen values of the matrix λ_1 , λ_2 , λ_3 .

Given
$$\lambda_1 \lambda_2 = 16$$
. wkt, $\lambda_1 \lambda_2 \lambda_3 = |A|$.
 $\lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix}$
=6(9-1)+2(-6+2)+2(2-6)=32
16 $\lambda_3 = 32$
 $\lambda_3 = 2$

3. If 2,2,3 are the eigen values of the matrix $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$. Find the eigenvalues of A^T

Sol: A square matrix A and its transpose A^T have the same eigen values.

Hence the eigenvalues of A^{T} are 2,2,3

4. Find the Eigen values of $\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 4 & 4 \end{bmatrix}$ Sol: Given A= $\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 4 & 4 \end{bmatrix}$

Clearly given matrix A is lower triangular matrix

Hence by property the eigenvalues of are 2,3,4

5. Two of the Eigen values of of the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 3 and 6. Find the Eigen values of A⁻¹.

Sol: Sum of the Eigen values = Sum of the main diagonal elements

= 3+5+3=11

Let k be the third Eigen value.

3+6+k=11

 $\mathbf{k} = \mathbf{2}$

The Eigen values of A are 2, 3, 6.

Hence by property, the Eigen values of \mathbf{A}^{-1} are $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$.

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=yuE86XeGhEA&index=15&list=PL05FE76A34A3C0C71

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Calculus with Early	Cengage	
1.	James Stewart	Transcendental	Learning, New	1.36-1.50
		Functions	Delhi	

Topic of Lecture : Cayley -Hamilton Theorem

Introduction :

The **Cayley Hamilton theorem** is one of the most powerful results in linear algebra. This **theorem** basically gives a relation between a square matrix and its characteristic polynomial. One important application of this **theorem** is to find inverse and higher powers of matrices.

Prerequisite knowledge for Complete understanding and learning of Topic :

In linear algebra, the Cayley–Hamilton theorem states that every square matrix over

a commutative ring (such as the real or complex field) satisfies its own characteristic equation.

Detailed content of the Lecture:

3. Verify Cayley –Hamilton theorem or the matrix $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A⁻¹ &A⁴ sol: Let A = $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

1

The Characteristic Equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements =2+2+2=6

$$S_{2} = \text{ sum of minors of main diagonal elements} = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix}$$
$$= (4-1)+(4-2)+(4-1)=8$$

S₃=Determinant value of A=
$$|A| = \begin{vmatrix} 2 & 1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{vmatrix} = 2(4-1)+1(-2+1)+2(1-2)=3$$

Hence the required Characteristic Equation is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$

By Cayley -Hamoilton theorem,

$$A^3 - 6A^2 + 8A - 3I = 0 \tag{1}$$

Verification:

$$A^{2} = A \times A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix}$$
$$A^{3} = A \times A^{2} = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} = \begin{bmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{bmatrix}$$

$$A^{3} - 6A^{2} + 8A - 3I$$

$$= \begin{bmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{bmatrix} - \begin{bmatrix} 42 & -36 & 56 \\ -30 & 36 & -36 \\ 30 & -30 & 42 \end{bmatrix} + \begin{bmatrix} 16 & -8 & 16 \\ -8 & 16 & -8 \\ 2 & -8 & 16 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Hence Cayley –Hamoilton theorem is verified.

To find A⁻¹:

(1) **X** A^{-1} , we get $A^2 - 6A + 8I - 3A^{-1} = 0$ $3A^{-1} = A^2 - 6A + 8I$ $3A^{-1} = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} + \begin{bmatrix} -12 & 6 & -12 \\ 6 & -12 & 6 \\ -6 & 6 & -12 \end{bmatrix} + \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$ $3A^{-1} = \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$ $A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$ To find A^4 :

(1) **X** A , we get $A^4 = 6A^3 - 8A^2 + 3A$ $= 6(6A^2 \cdot 8A + 3I) \cdot 8A^2 + 3A$ $= 36 A^2 \cdot 48A + 18I \cdot 8A^2 + 3A$ $= 28A^2 \cdot 45A + 18I$ $A^4 = \begin{bmatrix} 196 & -168 & 252 \\ -140 & 168 & -168 \\ 140 & -140 & 196 \end{bmatrix} - \begin{bmatrix} 90 & -45 & 90 \\ -45 & 90 & -45 \\ 45 & -45 & 90 \end{bmatrix} + \begin{bmatrix} 18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18 \end{bmatrix}$ $A^4 = \begin{bmatrix} 124 & -123 & 162 \\ -95 & 96 & -123 \\ 95 & -95 & 124 \end{bmatrix}$ $A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=qLOaCyqSuVA

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi,2018	1.80-1.90

Topic of Lecture : Cayley -Hamilton Theorem

Introduction :

The Cayley Hamilton theorem is one of the most powerful results in linear

algebra. This theorem basically gives a relation between a square matrix and its

characteristic polynomial. One important application of this **theorem** is to find inverse and higher powers of matrices.

Prerequisite knowledge for Complete understanding and learning of Topic : In linear algebra, the Cayley–Hamilton theorem states that every square matrix over

a commutative ring (such as the real or complex field) satisfies its own characteristic equation.

Detailed content of the Lecture: Using Cayley-Hamilton theorem to find the value of the matrix

 $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \text{ given by } A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^38 + A^2 - 2A + I$

Sol: The characteristic equation of A is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$ where

 $S_1 = sum of the main diagonal elements = 2 + 1 + 2 = 5$

 $S_2 = sum of the minors of the main diagonal elements$

$$= \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = (2 \cdot 0) + (4 \cdot 1) + (2 \cdot 0 \cdot 7)$$

$$S_{3} = |A| = \begin{vmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{vmatrix} = 2(2 - 0) - 1(0 - 0) + 1(0 - 1) = 3$$

Therefore , The characteristic equation is $\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$

By Cayley-Hamilton theorem , we get $\mathbf{A}^3 - 5\mathbf{A}^2 + 7A - 3I = 0$... (1)

Let $f(A) = A^8 + -5A^77A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$

$$= (A^3 - 5A^2 + 7A - 3I)(A^5 + A) + A^2 + A + I$$

$$= 0 + A^2 + A + I$$

$$= A^{2} + A + I$$

$$A^{2} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{bmatrix}$$

f(A) =	5 4 0 1 4 4	$ \begin{array}{c} 4\\0\\5 \end{array} + \begin{bmatrix} 2 & 1 & 1\\0 & 1 & 0\\1 & 1 & 2 \end{bmatrix} $	$+\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 0 & 3 \\ 5 & 5 \end{bmatrix}$	5 0 8		
	-		osite for further learning Pv=qLOaCyqSuVA	g (if any):		
-	ant Book	s/Journals for f	urther learning including	ng the page nos.:		
-	ant Book	ss/Journals for f		ng the page nos.: Publisher	Page.No	

Tutorial on Eigen values and Eigen vectors

Introduction: Let A= a_{ij} be a square matrix. The Characteristic Equation of A is $|A - \lambda I| = 0$. The roots

of the Characteristic Equation are called Eigen values of A. Let A=a_{ij} be a square matrix of order n .If

there exists a non zero vector X such that $AX = \lambda X$, then the vector X is called an Eigen vector of A

corresponding to the Eigen value λ .

Prerequisite knowledge for Complete understanding and learning of Topic :

1. Characteristic Equation

2. Matrix Multiplication

Detailed content of the Lecture:

	[6]	-6	ן 5
1. Find the Eigen values and Eigen vectors of	14	-13	10
	L7	-6	4 J

Sol: Step-1 To find the Characteristic Equation

The Characteristic Equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3 = 0$ where

 S_1 = sum of the main diagonal elements

 S_2 = sum of minors of main diagonal elements

 S_3 =Determinant value of A

Hence the required Characteristic Equation is $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = 0$

Step-2 To find the roots of the Characteristic Equation

by using calculator, the Eigen values are -1,-1,-1

Step-3 To find the Eigen vectors

To find the Eigen vectors, solve (A- λ I) X=0.

$\begin{bmatrix} 6 & -6 & 5\\ 14 & -13 & 10\\ 7 & -6 & 4 \end{bmatrix} - \lambda \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$	1))	0 1 0	$ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} $
---	-------------	-------------	---

$$\begin{bmatrix} \begin{pmatrix} 6-\lambda & -6 & 5\\ 14 & -13-\lambda & 10\\ 7 & -6 & 4-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Hence, a corresponding Eigen vector is
$$X_1 = \begin{bmatrix} 0 \\ 5 \\ 6 \end{bmatrix} X_2 = \begin{bmatrix} -5 \\ 0 \\ 7 \end{bmatrix} \& X_3 = \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}$$

2. For a given matrix A of order 3, |A| = 32 and two of its eigen values of 8 & 2. Find the sum of the eigenvalues.

Solution:

Step 1:The eigenvalues are $\lambda_1, \lambda_2, \lambda_3$.

|A| = Product of the eigenvalues = $\lambda_1 \lambda_2 \lambda_3$

Step 2: |A|=32 & $\lambda_1 = 8$, $\lambda_2 = 2$

(ie) $\lambda_1 \lambda_2 \lambda_3 = 32$

$$\lambda_3 = 2$$

Sum of the Eigen values = $\lambda_1 + \lambda_2 + \lambda_3 = 8 + 2 + 2 = 12$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	1.29-1.31

Topic of Lecture : Diagonalization of Matrix

Introduction :

Matrix diagonalization is the process of taking a square **matrix** and converting it into a special type of **matrix**--a so-called diagonal **matrix**--that shares the same fundamental properties of the underlying **matrix**.

Prerequisite knowledge for Complete understanding and learning of Topic : Diagonalizable A square matrix A is said to be diagonalizable if A is similar to a

diagonal matrix, i.e. if A = PDP-1 where P is invertible and D is a diagonal matrix.

Detailed content of the Lecture:

1.Diagonalise the matrix
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Sol: The characteristic equation of A is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$ where

 $S_1 = sum of the main diagonal elements = 8 + 7 + 3 = 18$

 $S_2 = sum of the minors of the main diagonal elements$

$$= \begin{vmatrix} 7 & -4 \\ -4 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix} = (21-16) + (24-4) + (56-36) = 45$$

$$S_{3} = |A| = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix} = 8(21-16) + 6(-18+8) + 2(24-14) = 0$$

Therefore, The characteristic equation is $\lambda^3 - 18\lambda^2 + 45\lambda = 0$

To solve the characteristic equation

$$\lambda^{3} - 18\lambda^{2} + 45\lambda = 0$$
$$\lambda(\lambda^{2} - 18\lambda + 45) = 0$$
$$\lambda = 0, \lambda = 3, \lambda = 15$$

Hence the Eigen values are 0, 3, 15

To find the Eigen vectors :

To find the Eigen vectors , solve $(A - \lambda I) = 0$

ie,

 $\begin{bmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \dots \dots (A)$

Case-(i) when $\lambda = 0$, equation (A) becomes

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$8x_1 - 6x_2 + 2x_3 = 0 \qquad \dots (1)$$
$$-6x_1 + 7x_2 - 4x_3 = 0 \qquad \dots (2)$$
$$2x_1 - 4x_2 + 3x_3 = 0 \qquad \dots (3)$$

Solving (1) and (2), we get,

$$\frac{x_1}{24-14} = \frac{x_2}{-12+32} = \frac{x_3}{56-36}$$
$$\frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{2}$$

Hence the corresponding Eigenvector $X_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

Case-(ii) when $\lambda = 3$, equation (A) becomes

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$5x_1 - 6x_2 + 2x_3 = 0 \qquad \dots (4)$$

$$-6x_1 + 4x_2 - 4x_3 = 0 \qquad \dots (5)$$

$$2x_1 - 4x_2 + 0x_3 = 0 \qquad \dots (6)$$

Solving (4) and (5), we get ,

$$\frac{x_1}{0-16} = \frac{x_2}{-8-0} = \frac{x_3}{24-8}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$
Hence the corresponding Eigenvector $X_1 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$
Case-(iii) when $\lambda = 15$, equation (A) becomes
$$\begin{bmatrix} -7 & -6 & 2\\ -6 & -8 & -4\\ 2 & -4 & -12 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

$$-7x_1 - 6x_2 + 2x_3 = 0 \qquad \dots (7)$$

$$-6x_1 - 8x_2 - 4x_3 = 0 \qquad \dots (8)$$

$$2x_1 - 4x_2 - 12x_3 = 0 \qquad \dots (9)$$

Solving (7) and (8), we get,

$$\frac{x_1}{96-16} = \frac{x_2}{-8-72} = \frac{x_3}{24+16}$$
$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

Hence the corresponding Eigenvector $X_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$

To form Normalized matrix N :

$$N = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$$

Find N^T:

$$N^{T} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$

Calculate N^TAN:

$$\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \mathbf{8} & -\mathbf{6} & \mathbf{2} \\ -\mathbf{6} & \mathbf{7} & -\mathbf{4} \\ \mathbf{2} & -\mathbf{4} & \mathbf{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix} \\ = \mathbf{D}$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=ERB5GY1P-Ns

Important Books/Journals	for further learning	g including the	e page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Jain R.K. , Iyengar S.R.K.	Advanced Engineering Mathematics, 4 th edition	Alpha Science International Ltd	1.91-1.100

Topic of Lecture : Canonical Form

Introduction :

This explains about how to reduce the Quadratic form to Canonical form through

Orthogonal transformation.

Prerequisite knowledge for Complete understanding and learning of Topic :

A quadratic equation is an equation of the second degree, meaning it contains at least one term that is squared. The standard form is $ax^2 + bx + c = 0$ with a, b, and c being constants, or numerical coefficients, and x is an unknown variable.

Detailed content of the Lecture:

1. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4zx$ into canonical form by an orthogonal transformation

Sol: The matrix of the quadratic form is

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

The characteristic equation of A is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$ where

 $S_1 = sum of the main diagonal elements = 6 + 3 + 3 = 12$

 $S_2 = sum of the minors of the main diagonal elements$

$$= \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 6 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 6 & -2 \\ -2 & 3 \end{vmatrix} = (9-1) + (18-4) + (18-4) = 36$$

$$S_{3} = |A| = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 6(9-1) + 2(-6+2) + 2(2-6) = 32$$

Therefore, The characteristic equation is $\lambda^3 - 18\lambda^2 + 45\lambda = 0$

To solve the characteristic equation

$$\lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$$

Hence the Eigen values are 2,2,8

To find the Eigen vectors :

To find the Eigen vectors , solve $(A - \lambda I)X = 0$

ie,
$$\begin{bmatrix} 6-\lambda & -2 & 2\\ -2 & 3-\lambda & -1\\ 2 & -1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

..... (A)

Case-(i) when $\lambda = 8$, equation (A) becomes

$$\begin{bmatrix} -2 & -2 & 2 \\ -2 & -5 & -1 \\ 2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$-2x_1 - 2x_2 + 2x_3 = 0 \qquad \dots (1)$$
$$-2x_1 - 5x_2 - x_3 = \qquad \dots (2)$$

$$2x_1 - x_2 - 5x_3 = 0 \qquad \dots (3)$$

Solving (1) and (2), we get,

$$\frac{x_1}{2+10} = \frac{x_2}{-4-2} = \frac{x_3}{10-4}$$
$$\frac{x_1}{2} = \frac{x_2}{-1} = \frac{x_3}{1}$$

Hence the corresponding Eigenvector $X_1 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ Case-(ii) when $\lambda = 2$, equation (A) becomes

$$\begin{bmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$4x_1 - 2x_2 + 2x_3 = 0 \qquad \dots (4)$$
$$-2x_1 + x_2 - x_3 = 0 \qquad \dots (5)$$
$$2x_1 - x_2 + x_3 = 0 \qquad \dots (6)$$

(4), (5) and (6) are same we get, $2x_1 - x_2 + x_3 = 0$

If
$$x_1 = 0$$
, we get $-x_2 + x_3 = 0$
 $\frac{x_2}{1} = \frac{x_3}{1}$

Hence the corresponding Eigenvector $X_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

To find the third Eigen vector, let $X_3 = \begin{bmatrix} l \\ m \\ n \end{bmatrix}$ 2l + m + n = 0 ...(7) l + m + n = 0(8)

Solving 7 and 8, we get

$$\frac{l}{-1-\frac{1}{1}} = \frac{m}{0-2} = \frac{n}{2-0}$$
$$\frac{l}{\frac{1}{1}} = \frac{m}{1} = \frac{n}{-1}$$

Hence the corresponding Eigenvector $X_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

To form Normalized matrix N :

Find N^T:

$$N = \begin{bmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \end{bmatrix}$$

$$N^{T} = \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \end{bmatrix}$$

Calculate N¹AN:

$$\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \end{bmatrix} \\ = \begin{bmatrix} \mathbf{8} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{2} \end{bmatrix} = \mathbf{D}$$

Canonical form :

$$(y_1y_2y_3) \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = 8y_1^2 + 2y_2^2 + 2y_3^2$$
 is the required canonical form.

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=9UCIpfbJvzs

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Bali N. P Manish Goyal	A Text book of Engineering Mathematics, 9 th edition	Laxmi Publications Pvt Ltd.	1.101-1.110

Tutorial on Properties & Cayley Hamilton theorem

Introduction : The Cayley Hamilton theorem is one of the most powerful results in linear algebra. This theorem basically gives a relation between a square matrix and its characteristic polynomial. One important application of this **theorem** is to find inverse and higher powers of matrices.

Prerequisite knowledge for Complete understanding and learning of Topic :

The **Cayley Hamilton theorem** is one of the most powerful results in linear algebra. This **theorem** basically gives a relation between a square matrix and its characteristic polynomial. One important application of this **theorem** is to find inverse and higher powers of matrices.

Detailed content of the Lecture:

1. For a given matrix A of order 3, |A| = 32 and two of its eigen values of 8 & 2. Find

the sum of the eigenvalues.

Solution: Step:1 Let the eigenvalues are $\lambda_1, \lambda_2, \lambda_3$. Given: |A|=32 & $\lambda_1 = 8$, $\lambda_2 = 2$ **Step:2** $\lambda_1 \lambda_2 \lambda_3 = 32$ **(8)(2)** λ₃=32 $\lambda_3 = 2$ Sum of the eigenvalues = $\lambda_1 + \lambda_2 + \lambda_3 = 8 + 2 + 2 = 12$ Step:3 2. If the sum of two eigen values and trace of a 3X3 matrix A are equal, find the value of Solution: **Step:1** Let λ_1 , λ_2 , λ_3 be the eigen values of the given 3X3 matrix A **Step:2** Sum of the eigen values = Trace of A (ie) $\lambda_1 + \lambda_2 + \lambda_3 = \text{Trace A}$ (1) By (1) $\lambda_1 + \lambda_2 + \lambda_3 = \lambda_1 + \lambda_2$ $\lambda_3 = 0$ **Step:3** |A| = Product of the eigenvalues = $\lambda_1 \lambda_2 \lambda_3$ = 03. Given $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$. Find the eigen values of A^2 Solution: Step:1 The given matrix "A" is a lower triangular matrix. \therefore The eigenvalues of "A" are -1, -3, 2 The eigenvalues of A^2 are $(-1)^2$, $(-3)^2$, $(2)^2$ Step:2 (ie) 1.9.4 4. Use Cayley-Hamilton Theorem to find $(A^4 - 4A^3 - 5A^2 + A + 2I)$ when $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ Solution: **Step:1** Given $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ The characteristic equation of A is $|A - \lambda I| = 0$ (ie) $\lambda^2 - S_1 \lambda + S_2 = 0$ $S_1 = 1 + 3 = 4$ $S_2 = |A| = -5$ \therefore The characteristic equation of A is $\lambda^2 - 4\lambda - 5 = 0$ Step:2 By Cayley-Hamilton Theorem we get $A^2 - 4A - 5I = 0$(1) **Step:3:** $A^4 - 4A^3 - 5A^2 + A + 2I$ $\therefore A^4 - 4A^3 - 5A^2 + A + 2I = A^2(A^2 - 4A - 5I) + A + 2I$ $= A^{2}(0) + A + 2I$ (using (1)) $=\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} + 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=qLOaCyqSuVA

Important Books/Journals for further learning including the page nos.:

S.N	Author(s)	Title of the Book	Publisher	Page nos
1	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi,2018	1.80-1.90

Topic of Lecture : Nature of Quadratic from

Introduction :

Index: The number of positive square terms in the canonical form is called the index of the quadratic form

Signature: The difference of number of positive and negative square terms is called the signature of the quadratic form.

Prerequisite knowledge for Complete understanding and learning of Topic :

Positive definite : If all the Eigen values of A are positive numbers, then the quadratic form is said to be Positive definite

Negative definite: If all the Eigen values of A are negative numbers, then the quadratic form is said to be negative definite

Positive semi definite: If all the Eigen values of A are positive and at least one Eigen value is zero, then the quadratic form is said to be Positive semi-definite

Negative semi definite: If all the Eigen values of A are negative and at least one Eigen value is zero,

then the quadratic form is said to be negative semi-definite

Indefinite: If A has both positive and negative Eigen values then the quadratic form is said to be Indefinite

Detailed content of the Lecture:

Problems based on nature of the quadratic form

1.Find the index and signature of the Q.F $x_1^2 + 2x_2^2 - 3x_3^2$

Solution: Let $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - 3x_3^2$ it is already in the canonical form.

Index = Number of positive terms in the C.F = 2

Signature = Number of positive terms- Number of negative terms = 2-1=1.

2. Determine the nature of the following quadratic form $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2$

Solution: Let $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2$ it is already in the canonical form.

The C.F contains two positive and one zero term.

Hence QF is positive semi-definite

3. Give the nature of a quadratic form whose matrix is $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

Solution: The Eigen values of the given matrix are -1, -1, -2

All the Eigen values are negative numbers.

Hence the nature of the Q.F is negative definite.

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=9UCIpfbJvzs

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Bali N. P Manish Goyal	A Text book of Engineering Mathematics, 9 th edition	Laxmi Publications Pvt Ltd.	1.110-1.115

Tutorial on Diagonalization and Quadratic form

Introduction :

The roots of the Characteristic Equation are called Eigen values of A.One important application of this Cayley _Hamilton Theorem is to find inverse and higher powers of matrices.

Prerequisite knowledge for Complete understanding and learning of Topic : 1. Charteristic Equation 2. Eigen values and Eigen vectors 3. Diagonalization

Detailed content of the Lecture:

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 be diagonalized? why?

Solution:

The characteristic equation is $\lambda^2 - S_1\lambda + S_2 = 0$ Step:1

 S_1 = Sum of the main diagonal elements = 1+1=2

$$S_2 = |A| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$

 $\lambda = 1,1$

⇒

Step:2 $\therefore \lambda^2 - 2\lambda + 1 = 0 \Rightarrow (\lambda - 1)(\lambda - 1) = 0$

Since the eigen values are repeated, the matrix cannot be diagonalized

2. Write down the quadratic form corresponding to the matrix $A = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$

Solution:
Step:1
$$A = \begin{bmatrix} coeff \ x^2 & \frac{1}{2}coeff \ xy & \frac{1}{2}coeff \ xz \\ \frac{1}{2}coeff \ yy & coeff \ y^2 & \frac{1}{2}coeff \ yz \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{1}{2} coeff xy & coeff y^2 & \frac{1}{2} coeff yz \\ \frac{1}{2} coeff xz & \frac{1}{2} coeff yz & coeff z^2 \end{bmatrix}$$

Step:2 : The quadratic form $y^2 + z^2 + 10 xy - 2 xz + 12yz$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	1.29-1.31

Unit – II Geometrical Applications of Differential Calculus

Topic of Lecture : Representation of function

Introduction :

A function is a relation between two sets of variables such that one variable

depends on another variable. We can represent different types of functions in different ways.

Usually, functions are represented using formulas or graphs.

Prerequisite knowledge for Complete understanding and learning of Topic : Graph, Table, Symbols, Words, & Picture/context. A recursive relationship

represents the slope of the line in the equation.

Detailed content of the Lecture:

1. Find the domain and range of the function $f(x) = 1 + x^2$

Solution : Given $f(x) = 1 + x^2$

i.e.,
$$y = 1 + x^{2}$$

 $y - 1 = x^{2}$
Always $x^{2} \ge 0$
hence $y - 1 \ge 0 \implies y \ge 1$

So the domain is $(-\infty, \infty)$ and the range is $[1, \infty)$

2. Find the domain and range of the function $f(x) = \frac{4}{3-x}$

Solution : Given $f(x) = \frac{4}{3-x}$

i.e., $y = \frac{4}{3-x}$ division by zero is not allowed

for x=3, we get 3 - x = 0

So the domain is $(-\infty, 3) \cup (3, \infty)$ and the range is $(-\infty, 0) \cup (0, \infty)$

3. Find whether the function $f(x) = x^2 + 1$ is even or odd?

Solution : Given $f(x) = x^2 + 1$

$$f(-x) = (-x)^{2} + 1$$
$$f(-x) = x^{2} + 1 = f(x)$$

Hence the given function is an even function.

4. Find whether the function $f(x) = x^3 + x$ is even or odd?

Solution : Given $f(x) = x^3 + x$

$$f(-x) = (-x)^3 + (-x)$$
$$f(-x) = -x^3 - x = -x^3 + x) = -f(x)$$

Hence the given function is an odd function.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=L6_c6qvlB8I&list=PLzJaFd3A7DZuyLLbmVpb9e9 VLf3Q9cYBL

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	2.1.1-2.1.5

Topic of Lecture : Limit of a function

Introduction :

The **limit of a function** at a point a in its domain (if it exists) is the value that the **function** approaches as its argument approaches. Informally, a **function** is said to have a **limit** L at a if it is possible to make the **function** arbitrarily close to L by choosing values closer and closer to a.

Prerequisite knowledge for Complete understanding and learning of Topic :

Let f(x) be a function **defined** on an interval that contains x=a, except possibly

at x=a . Then we say that, $\lim x \to af(x)=L \lim x \to a$ if for every number $\epsilon>0$ there is some

number δ >0 such that. $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$

Detailed content of the Lecture:

1. Evaluate : $\lim_{x \to \infty} \frac{2x+4}{x+1}$

Solution :
$$\lim_{x \to \infty} \frac{2x+4}{x+1} \quad (\frac{\infty}{\infty} form)$$

By using L'hospitals rule

$$\lim_{x \to \infty} \frac{2x+4}{x+1} = \lim_{n \to \infty} \frac{2}{1} = 2$$

2. Evaluate :
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

Solution:

$$\lim_{x \to 3} \frac{x^3 - 27}{x - 7} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3}$$

$$= \lim_{x \to 3} (x^2 + 3x + 9)$$

$$= 27.$$

3. Evaluate : $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$

Solution: $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$
$=\lim_{x\to 3} (x+3)$
= 6.
4. Evaluate : $\frac{\lim_{\theta \to 0} \frac{\sin n\theta}{\theta}}{\theta}$
Solution : $\lim_{\theta \to 0} \frac{\sin n\theta}{\theta} = \lim_{\theta \to 0} n \frac{\sin n\theta}{n\theta}$
$= n \frac{\lim_{n \theta \to 0} \frac{\sin n\theta}{n\theta}}{n\theta}$
$= n \cdot 1 = n$ 5. Prove that $\lim_{x \to 0} x = 0$
Solution: Given $f(x) = x = \begin{cases} x, if \ x \ge 0 \\ -x, if \ x < 0 \end{cases}$
$\lim_{x \to 0^+} x = \lim_{x \to 0^+} x = 0$ for $ x = x$, $x > 0$
$\lim_{x \to 0^{-}} x = \lim_{x \to 0^{-}} (-x) = 0$ for $ x = -x$, $x < 0$
therefore, $\lim_{x \to 0^-} f(x) = 0 = \lim_{x \to 0^+} f(x)$
Hence $\lim_{x \to 0} x = 0$
Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=L6_c6qv1B8I&list=PLzJaFd3A7DZuyLLbmVpb9e9 VLf3Q9cYBL
Important Books/Journals for further learning including the page nos.:

S.	.No	Author(s)	Title of the Book	Publisher	Page nos
	1	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	2.10-2.18

Topic of Lecture : Continuity

Introduction :

A **function** is said to be continuous on the interval [a,b] if it is continuous at each point in the interval. Note that this definition is also implicitly assuming that both f(a) and $\lim x \to af(x) \lim x \to a$ is exist. If either of these do not exist the **function** will not be continuous at x=a

Prerequisite knowledge for Complete understanding and learning of Topic :

The limit must exist at that point. The function must be defined at that point, and. The limit and the function must have equal values at that point.

Detailed content of the Lecture:

1. Explain why the function $f(x) = \frac{1}{x+2}$ at a = -2 is discontinuous at the given number 'a'

Solution : Given $f(x) = \frac{1}{x+2}$ at a = -2

$$f(-2) = \frac{1}{-2+2} = \frac{1}{0} = \infty = undefined$$

Hence f(x) is discontinuous at the given number 'a'.

2. Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1, 1]

Solution : If -1 < a < 1, then $\lim_{x \to a} f(x) = \lim_{x \to a} 1 - \sqrt{1 - x^2}$

$$= 1 - \lim_{x \to a} \sqrt{1 - x^2}$$
$$= 1 - \sqrt{1 - a^2} = f(a)$$

Hence f is continuous at 'a' if -1 < a < 1

3. Where is the following function $f(x) = sin(x^3)$ continuous?

Solution : we have f(x) = f(g(x)), where

 $g(x) = (x^3)$ and f(x) = sinx

Now g is continuous on R, since it is polynomial and f is continuous everywhere .

Thus $h = f \cdot g$ is continuous on R.

4. Show that $f(x) = 3x^2 + 2x - 1$ is continuous at x = 2.

Solution : Given $f(x) = 3x^2 + 2x - 1$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (3x^2 + 2x - 1) = 3(2^2) + 2(2) - 1 = 15$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x^2 + 2x - 1) = 3(2^2) + 2(2) - 1 = 15$$

therefore,
$$\lim_{x \to 2^{-}} f(x) = f(2) = \lim_{x \to 2^{+}} f(x)$$

Hence, $f(x) = 3x^2 + 2x - 1$ is continuous at x = 2

5. Find the domain where the function f is continuous. Also find the numbers at which the

function f is discontinuous, where $f(x) = \begin{cases} 1+x^2, & x \le 0\\ 2-x, & 0 < x \le 2\\ & (x-2)^2, & x > 2 \end{cases}$

Solution : At x=0

$$f(\mathbf{0}) = \lim_{x \to 0} f(x) = \lim_{x \to 0} (1 + x^2) = 1$$
 (1)

$$f(\mathbf{0}^+) = \lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} (2 - x) = 2 \qquad -----(3)$$

From 1, 2 and 3, we get, $f(0) = f(0^{-}) \neq f(0^{+})$

so, f is continuous on the left at x=0

f is discontinuous on the right at x=0

Hence, f is discontinuous at x=0

At x=2

$$f(2) = \lim_{x \to 2} f(x) = \lim_{x \to 0} (2 - x) = 0$$
 ------(1)

$$f(2^{-}) = \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2 - x) = 0 \qquad -----(2)$$

$$f(2^{+}) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x - 2)^{2} = 0 \qquad -----(3)$$

From 1, 2 and 3, we get, $f(2) = f(2^-) = f(2^+)$

Hence, f is discontinuous at x=2.

Video Content / Details of website for further learning (if any): -----https://www.youtube.com/watch?v=lxksRct1QOY&list=PLVCBPCYGv7bC1JwOGH-X0FSjTI4WRbI1

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	2.18-2.5

Tutorial on Limits and Continuity

Introduction :

A **function** is said to be continuous on the interval [a,b] if it is continuous at each point in the interval. Note that this definition is also implicitly assuming that both f(a) and $\lim x \to af(x) \lim x$

 \rightarrow a \square exist. If either of these do not exist the **function** will not be continuous at x=a

Prerequisite knowledge for Complete understanding and learning of Topic :

The limit must exist at that point. The function must be defined at that point, and. The limit and the function must have equal values at that point.

Detailed content of the Lecture:

1. Evaluate : $\frac{\lim_{\theta \to 0} \frac{\tan n\theta}{\theta}}{\theta}$

Solution :Step: 1 $\lim_{\theta \to 0} \frac{\tan n\theta}{\theta} = \lim_{\theta \to 0} n \frac{\sin n\theta}{\cos n\theta} \frac{1}{n\theta}$ Step: 2 $= n \left(\lim_{n\theta \to 0} \frac{\sin n\theta}{n\theta} \right) \left(\lim_{n\theta \to 0} \frac{1}{\cos n\theta} \right)$ $= n \cdot 1 = n$

2. Find the domain where the function f is continuous. Also find the numbers at which the

function f is discontinuous, where
$$f(x) = \begin{cases} 1+x^2, & x \le 0\\ 2-x, & 0 < x \le 2\\ & (x-2)^2, & x > 2 \end{cases}$$
.

Solution : Step:1 At x=0

$$f(\mathbf{0}) = \lim_{x \to 0} f(x) = \lim_{x \to 0} (1 + x^2) = 1$$
 (1)

$$f(\mathbf{0}^+) = \lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} (2 - x) = 2 \qquad -----(3)$$

From 1, 2 and 3, we get, $f(0) = f(0^{-}) \neq f(0^{+})$

so , f is continuous on the left at x=0

f is discontinuous on the right at x=0

Hence, f is discontinuous at x=0

Step:2 At x=2

$$f(2^{-}) = \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2 - x) = 0 \qquad -----(2)$$

$$f(2^{+}) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x - 2)^{2} = 0 \qquad -----(3)$$

From 1, 2 and 3, we get, $f(2) = f(2^{-}) = f(2^{+})$

Hence , f is discontinuous at x=2.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=5yfh5cf4-0w

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd	Khanna Publications,	2.29-2.31
		Edition	Delhi	

Topic of Lecture : DERIVATIVES

Introduction :

Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables. The most common example is the rate change of displacement with respect to time, called velocity.

Prerequisite knowledge for Complete understanding and learning of Topic :

The **Sum rule** says the derivative of a sum of functions is the sum of their derivatives.

The **Difference rule** says the derivative of a difference of functions is the difference of their derivatives.

Detailed content of the Lecture:

1. Evaluate:
$$\frac{d}{dx}(x^2 + x)$$

Solution: $\frac{d}{dx}(x^2 + x) = \frac{d}{dx}(x^2) + \frac{d}{dx}(x)$
 $= 2x + 1$
2. If $y = \frac{x^2 + x + 1}{2x}$, find $\frac{dy}{dx}$
Solution: $\frac{dy}{dx} = \frac{d}{dx}\left(\frac{x^2 + x + 1}{2x}\right)$

$$= \frac{d}{dx} \left(\frac{x^2}{2x} + \frac{x}{2x} + \frac{1}{2x} \right)$$
$$= \frac{d}{dx} \left(\frac{x^2}{2x} \right) + \frac{d}{dx} \left(\frac{x}{2x} \right) + \frac{d}{dx} \left(\frac{1}{2x} \right)$$
$$= \frac{d}{dx} \left(\frac{x}{2} \right) + \frac{d}{dx} \left(\frac{1}{2} \right) + \frac{d}{dx} \left(\frac{1}{2} \right) + \frac{d}{dx} \left(\frac{1}{2} \right)$$
$$= \frac{1}{2} + 0 + \frac{1}{2} (-1) x^{-2}$$

3. Differentiate the following function : $y = e^x - x$

Solution : Given $y = e^x - x$

$$y' = e^x - x$$

4. Differentiate the following function : $y = a^x$

Solution : Given : $y = a^x$

 $\mathbf{v} = \mathbf{a}^{x} = \mathbf{e}^{\log a^{x}} = \mathbf{e}^{x(\log a)} = \mathbf{e}^{(\log a)x}$

$$y' = e^{(\log a)x} = e^{(\log a)x} (\log a) = a^x \log a$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=5yfh5cf4-0w

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	Bali N. P Manish Goyal	A Text book of Engineering Mathematics, 9 th edition	Laxmi Publications Pvt Ltd.	226-2.40

Topic of Lecture : Differentiation Rules

Introduction :

The **Sum rule** says the derivative of a sum of functions is the sum of their derivatives.

The **Difference rule** says the derivative of a difference of functions is the difference of their

derivatives.

Prerequisite knowledge for Complete understanding and learning of Topic :

The **derivative** of a constant is equal to zero. ...

The derivative of a constant multiplied by a function is equal to the constant multiplied by

the **derivative** of the function. ...

The **derivative** of a sum is equal to the sum of the **derivatives**.

Detailed content of the Lecture:

1. Differentiate the following function: $f(x) = xe^x$

Solution: Given $f(x) = xe^x$

$$f'(x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x)$$

$$f'(x) = x \cdot e^x + e^x \cdot 1$$

$$f'(x) = (1 + x)e^{x}$$
2. If $f(x) = \frac{e^{x}}{x}$, then find $f'(x)$.
Solution: Given $f(x) = \frac{e^{x}}{x}$

$$f'(x) = \frac{x \frac{d}{dx}(e^{x}) - e^{x} \frac{d}{dx}(x)}{x^{2}}$$

$$f'(x) = \frac{x(e^{x}) - e^{x}(1)}{x^{2}}$$

$$f'(x) = \frac{e^{x}(x - 1)}{x^{2}}$$
3. Find an equation of the tangent line to the curve $y = 2x \sin x$ at the point $(\frac{\pi}{2}, \pi)$
Solution: Given $y = 2x \sin x$

 $y' = 2[x \cos x + \sin x \cdot 1] = 2x \cos x + 2 \sin x$ $m = y' at\left(\frac{\pi}{2}, \pi\right) = 2\frac{\pi}{2}(0) + 2(1) = 2$

Equation of the tangent line is $y - y_1 = m(x - x_1)$

$$y - \pi = 2\left(x - \frac{\pi}{2}\right)$$

y = 2x

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=5yfh5cf4-0w

Im	nportant Books/Journals for further learning including the page nos.:					
	S.No	Author(s)	Title of the Book	Publisher	Page nos	
	1	Bali N. P Manish Goyal	A Text book of Engineering Mathematics, 9 th edition	Laxmi Publications Pvt Ltd.	2.41-2.50	

Topic of Lecture : Differentiation Rules

Introduction :

The Sum rule says the derivative of a sum of functions is the sum of their derivatives.

The Difference rule says the derivative of a difference of functions is the difference of their derivatives.

Prerequisite knowledge for Complete understanding and learning of Topic :

The **derivative** of a constant is equal to zero. ...

The derivative of a constant multiplied by a function is equal to the constant multiplied by

the **derivative** of the function. ...

The **derivative** of a sum is equal to the sum of the **derivatives**.

Detailed content of the Lecture:

1. Find the derivatives of the following: $y = (1 - x^2)^{10}$

Solution: Given $y = (1 - x^2)^{10}$

put
$$u = (1 - x^2)$$
$$\frac{du}{dx} = 0 - 2x = -2x$$

Therefore, $y = u^{10}$

$$\frac{dy}{du} = 10u^9$$

by the chain rule, $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

then
$$\frac{dy}{dx} = (10u^9)(-2x) = 10(1-x^2)^9(-2x) = -20x(1-x^2)^9$$

2. Find the 50 th derivative of y = cos2x

Solution: Given : y = cos2x y' = -2 sin2x y'' = -4 cos2x y''' = 8 sin2x..... $y^{49} = -2^{49}sin2x$ $y^{50} = -2^{50}cos2x$

3. If
$$x^3 + y^3 = 16$$
. Find the value of $\frac{d^2y}{dx^2}$ at (2,2)

Solution: Given $x^3 + y^3 = 16$

$$3x^{2} + 3y^{2}\frac{dy}{dx} = 0 \qquad \implies \qquad x^{2} + y^{2}\frac{dy}{dx} = 0$$
$$\implies \qquad \frac{dy}{dx} = \frac{-x^{2}}{y^{2}} \qquad \therefore \qquad \frac{dy}{dx} at (2,2) = -1$$
$$2x + y^{2}\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} 2y\frac{dy}{dx} = 0$$

at (2,2)
$$4 + 4\frac{d^2y}{dx^2} + 4(-1)^2 = 0$$

$$4\frac{d^2y}{dx^2} = -8 \quad . Hence \quad \frac{d^2y}{dx^2} = -2$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=5yfh5cf4-0w

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	Bali N. P Manish Goyal	A Text book of Engineering Mathematics, 9 th edition	Laxmi Publications Pvt Ltd.	2.41-2.50

Tutorial on Derivatives

Introduction :

The Sum rule says the derivative of a sum of functions is the sum of their derivatives.

The Difference rule says the derivative of a difference of functions is the difference of their

derivatives.

Prerequisite knowledge for Complete understanding and learning of Topic :

The **derivative** of a constant is equal to zero. ...

The derivative of a constant multiplied by a function is equal to the constant multiplied by

the derivative of the function. ...

The **derivative** of a sum is equal to the sum of the **derivatives**.

Detailed content of the Lecture:

4. Find an equation of the tangent line to the curve $y = 2x \sin x$ at the point $(\frac{\pi}{2}, \pi)$

Solution: Step:1 Given y = 2x sinx

$$y' = 2[x \cos x + \sin x . 1] = 2x \cos x + 2 \sin x$$

Step:2
$$m = y' at\left(\frac{\pi}{2}, \pi\right) = 2\frac{\pi}{2}(0) + 2(1) = 2$$

Step:3 Equation of the tangent line is $y - y_1 = m(x - x_1)$

y = 2x

5. If
$$x^3 + y^3 = 16$$
. Find the value of $\frac{d^2y}{dx^2}$ at (2,2)

Solution: Step:1 Given $x^3 + y^3 = 16$

$$3x^{2} + 3y^{2}\frac{dy}{dx} = 0 \qquad = \gg \qquad x^{2} + y^{2}\frac{dy}{dx} = 0$$

Step: 2
$$\implies \frac{dy}{dx} = \frac{-x^2}{y^2} \qquad \therefore \quad \frac{dy}{dx} \text{ at } (2,2) = -1$$

Step:3 at (2,2) $4 + 4\frac{d^2y}{dx^2} + 4(-1)^2 = 0$

$$4\frac{d^2y}{dx^2} = -8 \quad .$$

Hence
$$\frac{d^2y}{dx^2} = -2$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=5yfh5cf4-0w

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	2.50-2.65

Topic of Lecture : Maxima and Minima of functions of one variable

Introduction :

The **maxima** of a **function** f(x) are all the points on the graph of the **function** which are 'local maximums'. ... We can visualise this as our graph having the peak of a 'hill' at x=a. Similarly, the **minima** of f(x) are the points for which, when we move a small amount to the left or right, the value of f(x) increases.

Prerequisite knowledge for Complete understanding and learning of Topic :

Find the first derivative of a function f(x) and find the critical numbers. Then, find the second derivative of a function f(x) and put the critical numbers. If the value is negative, the function has relative maxima at that point, if the value is positive, the function has relative maxima at that point.

Detailed content of the Lecture:

1. Find the critical values of the function : $f(x) = 2x^3 - 3x^2 - 36x$

Solution: Given $f(x) = 2x^3 - 3x^2 - 36x$

critical values of f occurs at f'(x) = 0

 $6x^2 - 6x - 36 = 0$

$$x = -2 and x = 3$$

Hence the critical values are -2,3

2. Find the absolute maximum and minimum values of $f(x) = 2 \cos x + \sin 2x$, $[0, \frac{\pi}{2}]$

Solution: Given $f(x) = 2\cos x + \sin 2x$, $[0, \frac{\pi}{2}]$

critical values of f occurs at f'(x) = 0 $f'(x) = -2 \sin x + 2 \cos 2x$ $-2 \sin x + 2 \cos 2x = 0$ $\cos 2x = \sin x$ $x = \frac{\pi}{6}$ critical value $= \frac{\pi}{6}$ $f\left(\frac{\pi}{6}\right) = \frac{3}{2}\sqrt{3}$ is the absolute maxmimum value of f. $f\left(\frac{\pi}{2}\right) = 0$ is the absolute minimum value of f.

3. Show that 5 is a critical number of the function $f(x) = 2 + (x - 5)^3$ but does not have a

local extreme value at 5.

Solution: Given $f(x) = 2 + (x - 5)^3$

critical values of f occurs at f'(x) = 0

$$f'(x) = 3(x-5)^2$$

 $0 = 3(x-5)^2$

Hence x = 5.

Therefore 5 is the critical value of the given function.

X	0	5	6	7	
f(x)	-123	2	3	10	

Therefore f(5) = 2 is not a local extreme.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=lxksRct1QOY&list=PLVCBPCYGv7bC1JwOGH-X0FSjTI4WRbI1

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	2.55-2.70

Topic of Lecture : Maxima and Minima of functions of one variable

Introduction :

The **maxima** of a **function** f(x) are all the points on the graph of the **function** which are 'local maximums'. ... We can visualise this as our graph having the peak of a 'hill' at x=a. Similarly, the **minima** of f(x) are the points for which, when we move a small amount to the left or right, the value of f(x) increases

Prerequisite knowledge for Complete understanding and learning of Topic :

Find the first derivative of a function f(x) and find the critical numbers. Then, find the

second derivative of a **function** f(x) and put the critical numbers. If the value is negative,

the function has relative maxima at that point, if the value is positive, the function has

relative maxima at that point.

Detailed content of the Lecture:

1. Answer the following questions about the functions whose derivatives are given

i) What are the critical point of f?

ii) on what interval is f increasing or decreasing?

iii)at what points , if any, does f assume local maximum and minimum values?

iv)Find intervals of concavity and the inflection points.

 $f(x) = x^4 - 2x^2 + 3$

Solution: Given $f(x) = x^4 - 2x^2 + 3$

i)
$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1)$$

critical points are occur a f'(x) = 0 t

f'(x) = 4x(x-1)(x+1) = 0

This implies that x = 0, x = 1 and x = -1

Hence the critical points are x = 0, x = 1 and x = -1

ii)

Interval	Sign of f'	Behavior of f
$-\infty < x < -1$	-	Decreasing
-1 < x < 0	+	Increasing
0 < x < 1	-	Decreasing
$1 < x < \infty$	+	Increasing

iii) The first derivative test tells us that

a) there is a local minimum of x at $x = \pm 1$	Hence	$f(\pm 1) = 2$

b) there is a **local maximum** of x at x = 0 Hence f(0) = 3

iv)
$$f''(x) = 12x^2 - 4$$
 $f''(x) = 0$ Hence $0 = 12x^2 - 4$
 $3x^2 - 1 = 0$ $\therefore x = \pm \frac{1}{\sqrt{3}}$

	۷3	
Interval	Sign of f'	Behavior of f
$-\infty < x < -\frac{1}{\sqrt{3}}$	+	Concave up
$-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$	-	Concave down
$\frac{1}{\sqrt{3}} < x < \infty$	+	Concave up

v) Inflection points are $(\pm \frac{1}{\sqrt{3}}, \frac{22}{9})$ since $f(\pm \frac{1}{\sqrt{3}}) = \frac{22}{9}$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=lxksRct1QOY&list=PLVCBPCYGv7bC1JwOGH-X0FSjTI4WRbI1

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	2.55-2.70

Tutorial on Maxima and Minima of functions of one variable

Introduction :

The **maxima** of a **function** f(x) are all the points on the graph of the **function** which are 'local maximums'. ... We can visualise this as our graph having the peak of a 'hill' at x=a. Similarly, the **minima** of f(x) are the points for which, when we move a small amount to the left or right, the value of f(x) increases.

Prerequisite knowledge for Complete understanding and learning of Topic :

Find the first derivative of a function f(x) and find the critical numbers. Then, find the second derivative of a function f(x) and put the critical numbers. If the value is negative, the function has relative maxima at that point, if the value is positive, the function has relative maxima at that point.

Detailed content of the Lecture:

1. Find the absolute maximum and minimum values of $f(x) = 2\cos x + \sin 2x$, $[0, \frac{\pi}{2}]$

Solution: Step:1 Given $f(x) = 2 \cos x + \sin 2x$, $[0, \frac{\pi}{2}]$ critical values of f occurs at f'(x) = 0 $-2 \sin x + 2 \cos 2x = 0$ critical value $= \frac{\pi}{6}$ Step:2 $f(\frac{\pi}{6}) = \frac{3}{2}\sqrt{3}$ is the absolute maxmimum value of f. $f\left(\frac{\pi}{2}\right) = 0$ is the absolute minimum value of f.

2.Answer the following questions about the functions whose derivatives are given i) What are the critical point of f ?

ii) on what interval is f increasing or decreasing?

iii)at what points , if any, does f assume local maximum and minimum values?

iv)Find intervals of concavity and the inflection points.

 $f(x) = x^4 - 2x^2 + 3$

Solution: Given $f(x) = x^4 - 2x^2 + 3$

Step i)
$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1)$$

critical points are occur a f'(x) = 0

Hence the critical points are x = 0, x = 1 and x = -1

Step ii)

Interval	Sign of f'	Behavior of f
$-\infty < x < -1$	-	Decreasing
-1 < x < 0	+	Increasing
0 < x < 1	-	Decreasing
$1 < x < \infty$	+	Increasing

Step iii) The first derivative test tells us that

a) there is a **local minimum** of x at $x = \pm 1$ Hence $f(\pm 1) = 2$

b) there is a **local maximum** of x at x = 0

Step iv)

 $3x^2 - 1 = 0$

 $f^{''}(x) = 12x^2 - 4$

$$x = \pm \frac{1}{\sqrt{3}}$$

Hence f(0) = 3

 $f^{''}(x) = 0$ Hence $0 = 12x^2 - 4$

	Interval	Sign of f'	Behavior of f			
	1	+	Concave up			
	$-\infty < x < -\frac{1}{\sqrt{3}}$					
	1 1	-	Concave down			
	$-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$					
	1	+	Concave up			
	$\frac{1}{\sqrt{3}} < x < \infty$					
Infl	Inflection points are $(\pm \frac{1}{\sqrt{3}}, \frac{22}{9})$ since $f(\pm \frac{1}{\sqrt{3}}) = \frac{22}{9}$					

...

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=lxksRct1QOY&list=PLVCBPCYGv7bC1JwOGH-X0FS-jTI4WRbI1

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd	Khanna Publications,	2.60-2.75

	Edition	Delhi		
Topic of Lec	ure : Mean Value Theroem			
Introduction	:			
	Mean Value Theorem tells us is	that these two slopes mu	ist be equal or in	other words the
secant line co	necting A and B and the tangent	line at x=c must be paral	llel. We can see	this in the
following ske	ch. Let's now take a look at a coup	ple of examples using th	e Mean Value T	heorem.
Prerequisite	knowledge for Complete under	rstanding and learning	; of Topic :	
Th	e Mean Value Theorem states the	at if a function f is conti	nuous on the clo	osed interval
[a,b] and diffe	rentiable on the open interval (a,b), then there exists a point	nt c in the interv	al (a,b) such

that f'(c) is equal to the function's average rate of change over [a,b].

1. Verify mean value theorem for the function $f(x) = x^2 + 3x + 2$, $1 \le x \le 2$ Solution: Given $f(x) = x^2 + 3x + 2$, $1 \le x \le 2$ Here a = 1 and b = 2 f'(x) = 2x + 3, f'(c) = 2c + 3Also $f(b) = 2^2 + 3(2) + 2 = 12$ $f(a) = 1^2 + 3(1) + 2 = 6$ Now, f(b) - f(a) = (b - a)f'(c) 12 - 6 = (2 - 1)(2c + 3) 6 = (2c + 3) $c = \frac{3}{2}$, ie., $1 < \frac{3}{2} < 2$

Hence mean value theorem is verified

2. Verify mean value theorem for the function $f(x) = e^{-2x}$, [0, 3] Solution: Given $f(x) = e^{-2x}$, [0,3] Here a=0, b=3

 $f'(x) = (-2) e^{-2x}$ Also $f(b) = f(3) = e^{-6}$, $f(a) = f(0) = e^{-0} = 1$ Now, f(b) - f(a) = (b - a)f'(c) $e^{-6} - 1 = (3 - 0)(-2) e^{-2c}$ $\frac{-1}{6}$ $(e^{-6} - 1) = e^{-2c}$ $\log \frac{1}{6}$ $(1 - e^{-6}) = \log e^{-2c}$ $c = -\frac{1}{2}\log(\frac{1}{6}(1 - e^{-6}))$ i.e., 0 < c < 3, since c = 0.3896.

Hence mean value theorem is verified

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6BikQbeW32k(mean value theorem)

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	2.71-2.85

Unit - III Functions of Several Variables

Topic of Lecture : Functions of Two variables

Introduction :

A derivative is a contract between two parties which derives its value/price from an underlying asset. The most common types of derivatives are futures, options, forwards and swaps.

Prerequisite knowledge for Complete understanding and learning of Topic :

Description: It is a financial instrument which derives its value/price from the underlying assets.

Detailed content of the Lecture:

1. If
$$u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$
 show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$
 $u(x, y, z) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$
 $u(tx, ty, tz) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$
 $= u(x, y, z) = t^0 u(x, y, z)$

 $\therefore u(x, y, z)$ is a homogeneous function of degree n = 0

: By Eular's theorem,

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$$

2. If $u = \frac{y^2}{2x}$, $v = \frac{x^2 + y^2}{2x}$, find $\frac{\partial(u,v)}{\partial(x,y)}$
 $u = \frac{y^2}{2x}$, $v = \frac{x^2 + y^2}{2x}$
 $\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$
 $= \begin{vmatrix} \frac{-y^2}{2x^2} & \frac{y}{x} \\ \frac{x^2 + y^2}{2x^2} & \frac{y}{x} \end{vmatrix}$
 $= -\frac{y^3}{2x^3} - \frac{y}{x} \left(\frac{x^2 + y^2}{2x^2}\right)$
 $= -\frac{y^3}{2x^3} - \frac{yx^2}{2x^3} - \frac{y^3}{2x^3}$
 $= \frac{-2y^3 - yx^2}{2x^3}$

$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{-(2y^3 + yx^2)}{2x^3}$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=dKPZL3T4NMk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Jain R.K., Iyengar S.R.K.	Advanced Engineering Mathematics, 4 th edition	Alpha Science International Ltd	R-214-225

Topic of Lecture : Taylor's Series

Introduction:

In mathematics, the Taylor series of a function is an infinite sum of terms that are expressed in

terms of the function's derivatives at a single point. ...

Prerequisite knowledge for Complete understanding and learning of Topic :

The partial sum formed by the n first terms of a **Taylor series** is a polynomial of degree n that

is called the nth **Taylor** polynomial of the function.

Detailed content of the Lecture:

1. Expand $e^x log(1 + y)$ in powers x and y upto terms of third degree.

Function	Value at (0,0)
$f(x,y) = e^x \log(1+y)$	f(0,0) = 0
$f_x(x,y) = e^x \log(1+y)$	$f_x(0,0)=0$
$f_{xx}(x,y) = e^x \log(1+y)$	$f_{xx}(0,0)=0$
$f_{xxx}(x,y) = e^x \log((1+y))$	$f_{xxx}\left(0,0\right)=0$
$f_y(x,y) = e^x \cdot \frac{1}{1+y}$	$f_y(0,0) = 1$
$f_{yy}(x,y) = \frac{-e^x}{(1+y)^2}$	$f_{yy}(0,0) = -1$
$f_{yyy}(x,y) = 2\frac{e^x}{(1+y)^3}$	$f_{yyy}(0,0) = 2$

$$f_{xy}(x,y) = \frac{e^{x}}{1+y} \qquad f_{xy}(0,0) = 1$$

$$f_{xxy}(x,y) = \frac{e^{x}}{1+y} \qquad f_{xxy}(0,0) = 1$$

$$f_{xyy}(x,y) = \frac{-e^{x}}{(1+y)^{2}} \qquad f_{xyy}(0,0) = -1$$

...(A)

We know that by Taylor's series

$$\begin{aligned} f(x,y) &= f(0,0) + x f_x(0,0) + y f_y(0,0) \\ &+ \frac{1}{2!} \Big[x^2 f_{xx}(0,0) + 2xy f_{xy}(0,0) + y^2 f_{yy}(0,0) \Big] \\ &+ \frac{1}{3!} \Big[x^3 f_{xxx}(0,0) + 3x^2 y f_{xxy}(0,0) + 3xy^2 f_{xyy}(0,0) + y^3 f_{yyy}(0,0) \Big] + \dots \end{aligned}$$

Substituting (A) in (B),

$$f(x,y) = 0 + x \times 0 + y \times 1 + \frac{1}{2!} [x^2 \times 0 + 2xy \times 1 + y^2 \times -1] + \frac{1}{3!} [x^3 \times 0 + 3x^2y \times 1 + 3xy^2 \times -1 + y^3 \times 2] + \dots$$

$$\therefore e^x \log(1+y) = y + xy - \frac{1}{2}y^2 + \frac{1}{2}(x^2y + xy^2) + \frac{1}{3}y^3 + \dots$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=19x213y_uk4 (Taylor's series)

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	2.85-2.96

Tutorial on Function of Two Variables

Introduction: A derivative is a contract between two parties which derives its value/price from an underlying asset. The most common types of derivatives are futures, options, forwards and swaps.

Prerequisite knowledge for Complete understanding and learning of Topic :

- **1.** Differentiation
- 2.Partial derivative

Detailed content of the Lecture:

1. If
$$u = f(x - y, y - z, z - x)$$
 show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

Solution	n: S	$\mathcal{O}_{\mathcal{A}}$	-z)[(x = y)(z - x)] -z)(z - x) - (y - z)(z - x)(z - x) - (y - z)(z - x)(z - x) - (y - z)(z - x)(z - x)(z - x)(z - x) - (y - z)(z - x)(z	(x-y)		
	S	tep:2 $\frac{\partial u}{\partial y} = (z$	(x-y)(y-z)			
		=(z-x)(x	(x-y) - (z-x)(y-z))		
	S	tep:3 $\frac{\partial u}{\partial z} = (x$	(y-z)[(y-z)(z-x)]			
		=(x-y)(y	(-z) - (y-z)(z-x)			
Hence	<u>אנ</u> סג	$\frac{d}{dx} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$				
2. I	f $u = x$	t^{y} , show that $\frac{\partial^{2}}{\partial x}$	$\frac{\partial^2 u}{\partial y} = \frac{\partial^2 u}{\partial y \partial x}$			
Solution	n: S	tep:2 $u = x^y$				
	$u = e^{y}$	^y .logx		[<i>a</i> :	$x = e^{x loga}$]	
	$\frac{\partial u}{\partial y} = e^{\frac{1}{2}}$	^{ylogx} .logx				
Step:2	į	$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right)$				
	$=\frac{x^3}{x}$	$\frac{y}{x} + x^{y}\frac{y}{x} \log x$		$[x^{y}]$	$= e^{y log x}$]	
	$=\frac{x^3}{x}$	$\frac{y}{1}$ [1 + ylogx]			(1)	
	u = e	^y .logx				
	$\frac{\partial u}{\partial x} = e^{y}$	logx <u>y</u> x				
Step:3	$\frac{\partial}{\partial y}$	$\frac{\partial^2 u}{\partial x} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right)$				
	$=\frac{x^{y}}{x}$	$+x^{y}\frac{y}{x}\log x$				
	$=\frac{x^{y}}{x}$	[1 + ylogx]			(2)	
From (1)&(2) v	ve get				
$\frac{\partial^2 u}{\partial x^2}$	$\frac{\partial^2 u}{\partial y \partial x}$	<u>ı </u>				
dxdy	dydx	¢				
Video C	ontent	/ Details of web	osite for further learning	g (if any):		
http	os://www	w.youtube.com/w	vatch?v=6Zacf25sXhk			
Importa	nt Bool	ks/Journals for f	urther learning includi	ng the page nos.:		
	Sl.No	Author(s)	Title of the Book	Publisher	Page.No	
	1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	3.20-3.35	
L		L				

Topic of Lecture : Taylor's Series

Introduction :

In mathematics, the **Taylor series** of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. ...

Prerequisite knowledge for Complete understanding and learning of Topic : The partial sum formed by the n first terms of a **Taylor series** is a polynomial of degree n

that is called the nth **Taylor** polynomial of the function.

Detailed content of the Lecture:

1. Expand $e^x \sin y$ in powers of x and y as far as terms of the third degree.

Solution:

Function	Value at (0,0)
$f(x,y) = e^x \sin y$	f(0,0) = 0
$f_x(x,y) = e^x \sin y$	$f_{\chi}(0,0) = 0$
$f_{xx}(x,y) = e^x \sin y$	$f_{xx}(0,0) = 0$
$f_{xxx}(x,y) = e^x \sin y$	$f_{xxx}(0,0)=0$
$f_y(x,y) = e^x \cos y$	$f_y(0,0) = 1$
$f_{yy}(x,y) = -e^x \sin y$	$f_{yy}(0,0) = 0$
$f_{yyy}(x,y) = -e^x \cos y$	$f_{yyy}(0,0) = -1$
$f_{xy}(x,y) = e^x \cos y$	$f_{xy}(0,0) = 1$
$f_{xxy}(x,y) = e^x \cos y$	$f_{xxy}(0,0) = 1$
$f_{xyy}(x,y) = -e^x \sin y$	$f_{xyy}\left(0,0\right)=0$

We know that by Taylor's series

$$\begin{split} f(x,y) &= f(0,0) + x f_x(0,0) + y f_y(0,0) \\ &+ \frac{1}{2!} \Big[x^2 f_{xx}(0,0) + 2 x y f_{xy}(0,0) + y^2 f_{yy}(0,0) \Big] \\ &+ \frac{1}{3!} \Big[x^3 f_{xxx}(0,0) + 3 x^2 y f_{xxy}(0,0) + 3 x y^2 f_{xyy}(0,0) + y^3 f_{yyy}(0,0) \Big] \\ \end{split}$$

Substituting (A) in (B),

$$f(x, y) = 0 + x \times 0 + y \times 1 + \frac{1}{2!} [x^2 \times 0 + 2xy \times 1 + y^2 \times 0] + \frac{1}{3!} [x^3 \times 0 + 3x^2y \times 1 + 3xy^2 \times 0 + y^3 \times -1] + \dots + 2xy^2 \times 0 + y^3 \times -1] + \dots + 2xy^2 \times 0 + y^3 \times -1] + \dots$$

$$\therefore e^x \sin y = y + xy + \frac{x^2y}{2} - \frac{y^3}{6} + \dots + \dots$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=19x213y_uk4 (Taylor's series)

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	2.85-2.96

Topic of Lecture : Partial Derivatives

Introduction :

A partial derivative of a function of several variables is its derivative with respect to one of

those variables, with the others held constant (as opposed to the total *derivative*, in which all variables are allowed to vary)

Prerequisite knowledge for Complete understanding and learning of Topic :

Partial derivatives are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation.

$$\frac{\partial f}{\partial x_m} \equiv \lim_{h \to 0} \frac{f(x_1, \dots, x_m + h, \dots, x_n) - f(x_1, \dots, x_m, \dots, x_n)}{h}.$$

Detailed content of the Lecture:

1. If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$

Solution:

$$u = \cos^{-1} \left(\frac{x+y}{\sqrt{x}+\sqrt{y}} \right)$$
$$\cos u = \left(\frac{x+y}{\sqrt{x}+\sqrt{y}} \right)$$

cos u is a homogeneous function of x and y of degree $\frac{1}{2}$.

By Euler's theorem
$$x \frac{\partial(\cos u)}{\partial x} + y \frac{\partial(\cos u)}{\partial y} = \frac{1}{2} \cos u$$

 $x(-\sin u) \frac{\partial u}{\partial x} + y(-\sin u) \frac{\partial u}{\partial y} = \frac{1}{2} \cos u$
 $-\sin u \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = \frac{1}{2} \cos u$
 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \frac{\cos u}{\sin u} = -\frac{1}{2} \cot u$
2. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$

$$u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$

$$\tan u = \left(\frac{x^3 + y^3}{x - y}\right)$$
$$= \frac{x^3 \left[1 + \left(\frac{y}{x}\right)^3\right]}{x \left[1 - \left(\frac{y}{x}\right)\right]}$$
$$= x^2 f\left(\frac{x}{y}\right)$$
$$\therefore \tan u \text{ is homogeneous function of degree 2.}$$
By Euler's theorem
$$x \frac{\partial (\tan u)}{\partial x} + y \frac{\partial (\tan u)}{\partial y} = 2 \tan u$$
$$x \cdot \sec^2 u \cdot \frac{\partial u}{\partial x} + y \cdot \sec^2 u \cdot \frac{\partial u}{\partial y} = 2 \tan u$$
$$\sec^2 u \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}\right] = 2 \tan u$$
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \frac{\tan u}{\sec^2 u}$$
$$= 2 \frac{\sin u}{\sec^2 u}$$
$$= 2 \frac{\sin u}{\cos u} \times \cos^2 u$$
$$= 2 \sin u \cos u$$
$$= \sin 2u$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=dKPZL3T4NMk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.10-3.35

Tutorial on partial derivative

Introduction: A partial derivative of a function of several variables is its derivative with respect to one

of those variables, with the others held constant (as opposed to the total *derivative*, in which all variables are allowed to vary)

Prerequisite knowledge for Complete understanding and learning of Topic :

Partial

derivatives are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation.

$$\frac{\partial f}{\partial x_m} \equiv \lim_{h \to 0} \frac{f(x_1, \dots, x_m + h, \dots, x_n) - f(x_1, \dots, x_m, \dots, x_n)}{h}.$$

Detailed content of the Lecture:

1. Find $\frac{du}{dt}$ if	f $u = \sin\left(\frac{x}{y}\right)$ where $x = e$	t^t , $y=t^2$		
Solution:				
Ster	p:1 $u = \sin\left(\frac{x}{y}\right)$ and $x =$	e^t , $y=t^2$		
Ster	p:2 $\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y}$	$-\frac{dy}{dt}$		
	$\frac{du}{dt} = e^t \left[\frac{t-2}{t^3} \right] \cos t$	$\left[\frac{e^t}{t^2}\right]$		
2. Using the	definition of total derivat	ive, find the value of $\frac{du}{dt}$	given	
$u = y^2 - 4$	$ax(or)u = x^2 + y^2, x$			
Solution:		.2	2 .	
Step:1	$u=y^2-4ax,$	$x = at^2$,	y=2at	
Step:2	$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$			
	= -4a(2at) + 2y(2a)		
	$= -8a^2 + 2(2at)(2at)$	2a)		
	$= -8a^2t + 8a^2t$			
	$\frac{du}{dt} = 0$			
3. If $u = x^3$	$y^2 + x^2 y^3$ where $x = at^2$	and $y = 2at$ then find	$\frac{du}{dt}$?	
Solution:				
Step:1	$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$			
u =	$x^3y^2 + x^2y^3$			
Step:2	$\frac{\partial u}{\partial x} = 3x^2y^2 + 2xy^3$	$\frac{\partial u}{\partial y} = 2x^3y + 3x^2$	y^2	
x	$t = at^2$	y = 2at		
$\frac{dx}{dt} =$	= 2 <i>at</i>	$\frac{dy}{dt} = 2a$		
Step:3	$\frac{du}{dt} = (3x^2y^2 + 2xy^3)$	$(2at) + (2x^3y + 3x^2y^2)$)(2a)	
	$= [3(at^2)^2(2at)^2 + 2(at^2)^2 + 2(at^2$	$[at^2)(2at)^3](2at) + [2($	$(at^2)^3 2at +$	
	$3(at^2)^2(2at)^2]2a$			
$\frac{du}{dt} = 56a^5t^6(t+1)$				
Video Content / D	etails of website for further l	earning (if any):		

https://www.youtube.com/watch?v=6Zacf25sXhk

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	3.45-3.65
of Lectur	e : Partial Deriv			
uction :				
-		e of a function of several		-
lowed to va		eld constant (as opposed	to the total <i>derivali</i>	ve, ili wilicii ali v
		omplete understanding	and learning of T	opic :
Par	tial derivatives a	are defined as derivatives	of a function of mu	iltiple variables w
variable	of interest are he	ld fixed during the differ	entiation.	
$\frac{\partial f}{\partial f} = 1$	$\lim_{m \to \infty} \frac{f(x_1,, x_m +, x_m)}{1 +, x_m}$	$(-h,, x_n) - f(x_1,, x_m,, h)$	$, x_n$	
- m			•	
d contei	nt of the Lectur	e:		
$T(\alpha) = t$	F(x, y) + h cm	du _ du _ du dy		
If $u = j$	$(\mathbf{x}, \mathbf{y}), then$	$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\frac{dy}{dx}$		
	de.). da da		
on: we	have $\frac{du}{dt} = \frac{d}{dt}$	$\frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt}$		
	ui i	ox ul oy ul		
P11+ +=	ev we get			
I ut t-	■x , we get			
dı	$\partial u dx$	า อินdvdu อิน อิ	u dv	
$\frac{dx}{dx}$	$\frac{dx}{dx} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y}\frac{dy}{dx} = \frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial}{\partial x}$	$\frac{d}{v} \frac{dy}{dx}$	
			y and	
. Find $\frac{dy}{dy}$	when $x^3 + y^3 =$	- 3axy		
dx	2	,		
tion:				
Let $f(\mathbf{r})$	$y) = x^3 + y^3 -$	- 3axv		
	, , j			
d	$\frac{\partial f}{\partial x}$			
$\frac{dy}{dx}$	$\frac{\partial f}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}$			
	$\overline{\partial y}$			
	$\frac{dy}{dx} = -\frac{3x^2 - 3x^2}{3y^2 - 3x^2}$	Bay		
	$dx \qquad 3y^2 - 3$	Bax		
	$dy x^2$	<i>a</i> 22		
-	$\frac{dy}{dx} = -\frac{x^2}{y^2} - \frac{x^2}{y^2} - \frac$			
(ux y ² –	-ax		

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=dKPZL3T4NMk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.10-3.35

Topic of Lecture : Jacobians

Introduction :

Prerequisite knowledge for Complete understanding and learning of Topic :

Detailed content of the Lecture:

1. If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$	² . Show that the Jacobian of $y_{1,}y_{2,}y_{3}$ with
respect to $x_{1,}x_{2,}x_{3}$ is 4.	

$y_1 = \frac{x_2 x_3}{x_1}$	$y_2 = \frac{x_3 x_1}{x_2}$	$y_3 = \frac{x_1 x_2}{x_3}$
$\frac{\partial y_1}{\partial x_1} = -\frac{x_2 x_3}{x_1^2}$	$\frac{\partial y_2}{\partial x_1} = \frac{x_3}{x_2}$	$\frac{\partial y_3}{\partial x_1} = \frac{x_2}{x_3}$
$\frac{\partial y_1}{\partial x_2} = \frac{x_3}{x_1}$	$\frac{\partial y_2}{\partial x_2} = -\frac{x_3 x_1}{x_2^2}$	$\frac{\partial y_3}{\partial x_2} = \frac{x_1}{x_3}$
$\frac{\partial y_1}{\partial x_3} = \frac{x_2}{x_1}$	$\frac{\partial y_2}{\partial x_3} = \frac{\partial x_1}{\partial x_2}$	$\frac{\partial y_3}{\partial x_3} = -\frac{x_1 x_2}{x_3^2}$

	$\frac{\partial y_1}{\partial x_1}$	$\frac{\partial y_1}{\partial x_2}$	$\frac{\partial y_1}{\partial x_3}$
$\frac{\partial(y_{1,y_{2,y_{3}}})}{\partial(y_{1,y_{2,y_{3}}})} =$	$\frac{\partial y_2}{\partial y_2}$	$\frac{\partial y_2}{\partial y_2}$	$\frac{\partial y_2}{\partial y_2}$
$\partial(x_{1,}x_{2,}x_{3})$	∂x_1 ∂y_3	дх ₂ ду ₃	д x ₃ д y ₃
	∂x_1	∂x_2	∂x_3

=	$\begin{vmatrix} -\frac{x_2 x_3}{x_1^2} & \frac{x_3}{x_1} \\ \frac{x_3}{x_2} & -\frac{x_3 x_1}{x_2^2} \\ \frac{x_2}{x_3} & \frac{x_1}{x_3} \end{vmatrix}$	$\frac{\frac{x_2}{x_1}}{\frac{x_1}{x_2}}$ $\frac{\frac{x_1x_2}{x_3^2}}{\frac{x_3^2}}$	[Using (A)
=	$= \frac{1}{x_1^2 x_2^2 x_3^2} \begin{vmatrix} -x_2 x_3 \\ x_2 x_3 \\ x_2 x_3 \end{vmatrix}$	$x_3 x_1$ -x_3 x_1 x_3 x_1	$\begin{array}{c} x_1 x_2 \\ x_1 x_2 \\ x_1 x_2 \end{array}$
=	$= \frac{x_1^2 x_2^2 x_3^2}{x_1^2 x_2^2 x_3^2} \begin{vmatrix} -1 & 1 \\ 1 & -1 \\ 1 & 1 \end{vmatrix}$	$\begin{array}{c c}1\\1\\-1\end{array}$	
=	-1(1-1)-1(-1-1)+1(1	+1)	
=	0+2+2		
=	- 4		

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=UWiPnPITFfI (Jacobian & properties)

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.45-3.55

Topic of Lecture : Maxima and Minima

Introduction :

For a **function** of one variable, f(x), we find the local **maxima/minima** by differenti-

ation. Maxima/minima occur when f(x) = 0. x = a is a maximum if f(a) = 0 and f(a) < 0; • x = a is a

minimum if f(a) = 0 and f(a) > 0; A point where f(a) = 0 and f(a) = 0 is called a point of inflection.

Prerequisite knowledge for Complete understanding and learning of Topic :

Then the first step is to **find** the critical points x=a, where f'(a)=0. Just because f'(a)=0, it does

not mean that f(x) has a local maximum or minimum at x=a. But, at all **extrema**, the derivative will be

zero, so we know that the extrema must occur at critical points.

Detailed content of the Lecture:

1. Find the absolute maximum and minimum value of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ on triangular plate in the first quadrant, bounded by the lines x=0, y=0 and y=9-x.

Solution:

$f(x, y) = 2 + 2x + 2y - x^2 - y^2$		
2.6	$\frac{\partial f}{\partial y} = 2 - 2y$ $\frac{\partial f}{\partial y} = 0$ $2-2y=0$	

Turning point is (1,1)	
	At (1,1)
$r = \frac{\partial^2 f}{\partial x^2} = -2$	-2 < 0
$s = \frac{\partial^2 f}{\partial x \partial y} = 0$	0
$t = \frac{\partial^2 f}{\partial y^2} = -2$	-2 < 0
$rt - s^2$	4 - 0 > 0
Result:	$r < 0$ $rt - s^2 > 0$
	$rt - s^2 > 0$
	(1,1) – maximum point

Maximum value of 'f' is = 2+2+2-1-1 = 4

2. Examine $f(x, y) = x^3 + y^3 - 3xy$ for maximum and minimum values. Solution:

∂f	20
$\frac{\partial f}{\partial x} = 3x^2 - 3y$	$\frac{\partial f}{\partial y} = 3y^2 - 3x$
$\frac{\partial f}{\partial x} = 0$ $3x^2 - 3y = 0$	$\frac{\partial f}{\partial y} = 0$
$3x^2 - 3y = 0 x^2 = y \dots(1)$	$3y^2 - 3x = 0$ $y^2 = x \dots (2)$

...(3)

...(4)

...(5)

To find turning points: (1) $\Rightarrow y = x^2$ (2) $\Rightarrow \qquad y^2 = x$ (3) $\Rightarrow \qquad x^4 = y^2$ Substituting (4) in (5), we get $x^4 = x$ $x^4 - x = 0$

$x(x^{3} - 1) = 0$ x = 0 Put x = 0 in (3), y = 0 x = 1 in (3), y = 1 Turning points are (0,0), (1,1)	or 1	
	At (0,0)	At (1,1)
$r = \frac{\partial^2 f}{\partial x^2} = 6x$	0	6
$r = \frac{\partial^2 f}{\partial x^2} = 6x$ $s = \frac{\partial^2 f}{\partial x \partial y} = -3$	-3	-3
$t = \frac{\partial^2 f}{\partial y^2} = 6y$ $rt - s^2$	0	6
$rt - s^2$	-9 > 0	36 - 9 = 27 > 0
Result:	r = 0	<i>r</i> < 0
	$rt - s^2 > 0$	$rt - s^2 > 0$
	No extremum value	(1,1)–maximum point

Maximum value of 'f' is = 1+1-3

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=SRfb-AjDCoc

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.45-3.55

Tutorial on Maxima and Minima

Introduction: To Introduce the jacobians to find the given functions u, v with respect to x,y

Prerequisite knowledge for Complete understanding and learning of Topic :

1. Determinant

2. Differentiation

Detailed content of the Lecture:

1. Write the sufficient condition for f(x, y) to have a maximum value at (a, b)

Solution:

Step:1 If $f_x(a, b) = 0$, $f_y(a, b) = 0$ and $f_{xx}(a, b) = A$, $f_{xy}(a, b) = B$, $f_{yy} = C$

Step:2 Then if
$$AC - B^2 > 0$$
 and $A > 0$ $(or)B > 0$.
2. If $u = \frac{y^2}{2x}$, $v = \frac{x^2 + y^2}{2x}$, find $\frac{\partial(u,v)}{\partial(x,y)}$ (May/June 2012, Jan/Feb 2010)
Solution:
Step:1 $u = \frac{y^2}{2x}$, $v = \frac{x^2 + y^2}{2x}$
Step:2 $\frac{\partial(u,v)}{\partial(x,y)} = \left| \frac{\partial u}{\partial x} \quad \frac{\partial u}{\partial y} \right|$
 $= \left| \frac{-\frac{y^2}{2x^2}}{2x^2} \quad \frac{y}{x} \right|$
 $= -\frac{y^3}{2x^3} - \frac{y}{x} \left(\frac{x^2 + y^2}{2x^2} \right)$
 $= -\frac{y^3}{2x^3} - \frac{yx}{x} \left(\frac{x^2 + y^2}{2x^2} \right)$
 $= -\frac{2y^3 - yx^2}{2x^3}$
 $\frac{\partial(u,v)}{\partial(x,y)} = \frac{-(2y^3 + yx^2)}{2x^3}$
3. If $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$ $(or) \frac{\partial(r,\theta)}{\partial(x,y)}$
Solution:
Step:1 $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$ $[or) \frac{\partial(r,\theta)}{\partial(x,y)}$
Solution:
Step:2 $\frac{\partial(x,y)}{\partial(r,\theta)} = \left| \frac{\partial x}{\partial r} \quad \frac{\partial x}{\partial \theta} \right|$
 $= \left| \frac{\cos\theta}{\sin\theta} - r\sin\theta}{r\cos\theta} \right|$
 $= r(\cos^2\theta + \sin^2\theta)$
 $= r$
Video Content/Details of website for further learning (if any):
https://www.youtube.com/watch?v=6Zacf25sXhk
Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1	Grewal. B.S	Higher Engineering	Khanna	
1.	Glewal. D.S	Mathematics, 43 rd Edition	Publications, Delhi	

Introduction :

For a **function** of one variable, f(x), we find the local **maxima**/**minima** by differentiation. Maxima/minima occur when f(x) = 0. x = a is a maximum if f(a) = 0 and f(a) < 0; • x = a is a minimum if f(a) = 0 and f(a) > 0; A point where f(a) = 0 and f(a) = 0 is called a point of inflection.

Prerequisite knowledge for Complete understanding and learning of Topic : Then the first step is to **find** the critical points x=a, where f'(a)=0. Just because f'(a)=0, it does not mean that f(x) has a local maximum or minimum at x=a. But, at all **extrema**, the derivative will be zero, so we know that the **extrema** must occur at critical points.

Detailed content of the Lecture:

1. A rectangular box, open at the top, is to have a volume of 32 cc. Find the dimensions of the box that requires the least material for its construction.

Solution:

Let x,y,z be the length, breadth and height of the box respectively. When it requires least material, the surface area of the box should be least.

The surface area S = xy+2yz+2zx. Hence we have to minimize 'S' subject to the condition that the volume of the box xyz = 32.

	$F = (xy + 2yz + 2zx) + \lambda$	(1)
$\frac{\partial F}{\partial x} = 0$	$\frac{\partial F}{\partial y} = 0$	$\frac{\partial F}{\partial z} = 0$
$y + 2z + \lambda yz = 0$	$x + 2z + \lambda z x = 0$	$2x + 2z + \lambda xy = 0$
$y + 2z = -\lambda yz$	$x + 2z = -\lambda zx$	$2x + 2z = -\lambda xy$
$-\lambda = \frac{1}{z} + \frac{2}{y}$	$-\lambda = \frac{1}{z} + \frac{2}{x}$	$-\lambda = \frac{2}{y} + \frac{2}{x}$
(2)	(3)	(4)
	$\frac{\partial F}{\partial \lambda} = 0 \Rightarrow xyz - 32$	= p(5)

From (2) and (3),

...

From (3) and (4),

$$\frac{1}{z} + \frac{2}{y} = \frac{1}{z} + \frac{2}{x}$$

$$\frac{2}{y} = \frac{2}{x}$$

$$x = y \qquad \dots (6)$$

$$\therefore \quad x = y = 2z$$
Substituting (8) in (5),
$$(2z)(2z)(z) = 32$$

$$\frac{1}{z} + \frac{2}{x} = \frac{2}{y} + \frac{2}{x}$$

$$\frac{1}{z} = \frac{2}{y}$$

$$y = 2z \qquad \dots (7)$$

$$(2z)(2z)(z) = 32$$

$$4x^3 = 32$$

$$x^3 = \frac{32}{4} = 8$$

: y = 4, x = 4 [From (8)]

 \therefore The dimensions of the box are 4, 4, 2.

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=SRfb-AjDCoc

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.45-3.55

Topic of Lecture : Lagrange's Multipliers method

Introduction :

Prerequisite knowledge for Complete understanding and learning of Topic :

Detailed content of the Lecture:

1. Find the maximum value of $x^m y^n z^p$ when x+y+z = a.

Solution:

Let $f = x^m y^n z^p$ and g = x + y + z = a

$$\mathbf{F} = (\mathbf{x}^m \mathbf{y}^n \mathbf{z}^p) + \mathbf{\lambda} (\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{a}) \qquad \dots (1)$$

$$\frac{\partial F}{\partial x} = 0 \qquad \qquad \frac{\partial F}{\partial y} = 0 \qquad \qquad \frac{\partial F}{\partial z} = 0 \\ mx^{m-1}y^n z^p + \lambda = 0 \qquad \qquad ny^{-1}x^m z^p + \lambda = 0 \\ -\lambda = mx^{m-1}y^n z^p \qquad \qquad -\lambda = ny^{-1}x^m z^p \qquad \qquad -\lambda = px^m y^n z^{p-1} \\ (2) \qquad \qquad (3) \qquad \qquad (4) \\ \frac{\partial F}{\partial \lambda} = 0 \Rightarrow x + y + z - a = p \qquad \qquad \dots (5)$$

From (2), (3) and (4), we get

$$mx^{m-1}y^{n}z^{p} = ny^{-1}x^{m}z^{p} = px^{m}y^{n}z^{p-1}$$

$$\div \text{ by } x^{m}y^{n}z^{p} , \quad \frac{mx^{m-1}y^{n}z^{p}}{x^{m}y^{n}z^{p}} = \frac{ny^{-1}x^{m}z^{p}}{x^{m}y^{n}z^{p}} = \frac{px^{m}y^{n}z^{p-1}}{x^{m}y^{n}z^{p}}$$

$$\frac{m}{x} = \frac{n}{y} = \frac{p}{z}$$

$$= \frac{m+n+p}{x+y+z}$$

$$= \frac{m+n+p}{a}$$

: Hence maximum value of f occurs when

$$x = \frac{am}{m+n+p}$$
 [Taking 1st and last] ...(6)

$$y = \frac{an}{m+n+p}$$
 [Taking 2nd and last] ...(7)

$$z = \frac{ap}{m+n+p}$$
 [Taking 3rd and last] ...(8)

Substituting (6), (7), (8) in $f = x^m y^n z^p$, the maximum value of

$$f = \left(\frac{am}{m+n+p}\right)^m \left(\frac{an}{m+n+p}\right)^n \left(\frac{ap}{m+n+p}\right)^p$$
$$= a^{m+n+p} \frac{m^m n^n p^p}{(m+n+p)^{m+n+p}}$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=N_CyeSqqYs4(lagrange's method of multipliers)

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	3.71-3.85

Unit - IV Integral Calculus

Topic of Lecture : Definite and Indefinite Integrals

Introduction: Integral Calculus is the study of finding a function based on the information about its rate of change.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Concept of integration
- Integral Mean Value Theorem
- Fundamental Theorem of Calculus

Detailed content of the Lecture: Theorem 1:

If *f* is continuous on [a, b], or if *f* has only a finite number of jump discontinuous, then *f* is integrable on [a, b]

i.e.,
$$\int_a^b f(x) dx$$
 exists.

Theorem 2:

If *f* is integrable on [*a*, *b*], then $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$ Where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$

1. Evaluate $\int_0^3 (x^2 - 2x) dx$ by using Riemann sum by taking right end points as the sample points.

Take *n* subintervals, we have
$$\Delta x = \frac{b-a}{n} = \frac{3}{n}$$

 $x_0 = 0, x_1 = \frac{3}{n}, x_2 = \frac{6}{n}, x_3 = \frac{9}{n}, ..., x_i = \frac{3i}{n}, ..., x_n = \frac{3x}{n}$
Since we are using right end points.

$$\int_0^3 (x^2 - 2x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{3i}{n}\right) \left(\frac{3}{n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{i=1}^n \left[\left(\frac{3i}{n}\right)^2 - 2\left(\frac{3i}{n}\right) \right]$$

$$= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{i=1}^n \left[\frac{9i^2}{n^2} - \frac{6i}{n} \right]$$

$$= \lim_{n \to \infty} \frac{27}{n^3} \sum_{i=1}^n i^2 - \lim_{n \to \infty} \frac{18}{n^2} \sum_{i=1}^n i$$

$$= \lim_{n \to \infty} \frac{27}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right] - \lim_{n \to \infty} \frac{18}{n^2} \frac{n(n+1)}{2}$$

$$= \lim_{n \to \infty} \frac{27}{6n^3} n^3 \left[1 + \frac{1}{n} \right] \left[2 + \frac{1}{n} \right] - \lim_{n \to \infty} \frac{9}{n^2} n^2 \left[1 + \frac{1}{n} \right]$$

$$= \frac{27}{6} (1)(2) - 9(1) = 9 - 9 = 0$$

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	4.15-4.25

Topic of Lecture : Definite and Indefinite Integrals

Introduction: The definite integral of f(x) is a NUMBER and represents the area under the curve f(x) from x=a to x=b. The indefinite integral of f(x) is a FUNCTION and answers the question, "What function when differentiated gives f(x)?"

Prerequisite knowledge for Complete understanding and learning of Topic :

- Concept of integration
- Integral Mean Value Theorem
- Fundamental Theorem of Calculus

Detailed content of the Lecture:

1.
$$\int x^{-4} dx$$

Solution:

$$\int x^{-4} dx = \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + C$$
$$= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + C$$
$$= \frac{2}{5}x^{5/2} + C$$

$$2. \quad \int \frac{x^3 + 2x + 1}{x^4} dx$$

Solution:

$$\int \frac{x^{3}+2x+1}{x^{4}} dx = \int \left(\frac{1}{x} + \frac{2}{x^{3}} + \frac{1}{x^{4}}\right) dx$$
$$= \int \left(\frac{1}{x} + 2x^{-3} + x^{-4}\right) dx$$
$$= \log x + 2\frac{x^{-2}}{(-2)} + \frac{x^{-3}}{(-3)} + C$$
$$= \log x - \frac{1}{x^{2}} - \frac{1}{3x^{3}} + C$$

3. $\int (u+4)(2u+1)du$

$$\int (u+4)(2u+1)du = \int [2u^2 + u + 8u + 4]du$$
$$= \int (2u^2 + 9u + 4)du$$
$$= 2\frac{u^3}{3} + 9\frac{u^2}{2} 4u + C$$

 $4. \quad \int \left(ax + \frac{b}{x^2}\right) dx$

Solution:

$$\int \left(ax + \frac{b}{x^2}\right) dx = \int (ax + bx^{-2}) dx$$
$$= a\frac{x^2}{2} - bx^{-1} + C$$

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	4.26-4.35

Tutorial on Definite and Indefinite Integrals

Introduction: Integral Calculus is the study of finding a function based on the information about its rate of change.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Concept of integration
- Integral Mean Value Theorem
- Fundamental Theorem of Calculus

Detailed content of the Lecture:

2. Evaluate $\int_0^3 (x^2 - 2x) dx$ by using Riemann sum by taking right end points as the sample points.

Solution Step: 1 $x_0 = 0, x_1 = \frac{3}{n}, x_2 = \frac{6}{n}, x_3 = \frac{9}{n}, \dots, x_i = \frac{3i}{n}, \dots, x_n = \frac{3x}{n}$ Since we are using right end points.

$$Step: 2 \int_0^3 (x^2 - 2x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{3i}{n}\right) \left(\frac{3}{n}\right)$$
$$= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{i=1}^n \left[\left(\frac{3i}{n}\right)^2 - 2\left(\frac{3i}{n}\right)\right]$$

$$= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{i=1}^{n} \left[\frac{9i^{2}}{n^{2}} - \frac{6i}{n}\right]$$

$$= \lim_{n \to \infty} \frac{27}{n^{3}} \sum_{i=1}^{n} i^{2} - \lim_{n \to \infty} \frac{18}{n^{2}} \sum_{i=1}^{n} i$$

$$= \lim_{n \to \infty} \frac{27}{n^{3}} \left[\frac{n(n+1)(2n+1)}{6}\right] - \lim_{n \to \infty} \frac{18}{n^{2}} \frac{n(n+1)}{2}$$

$$= \lim_{n \to \infty} \frac{27}{6n^{3}} n^{3} \left[1 + \frac{1}{n}\right] \left[2 + \frac{1}{n}\right] - \lim_{n \to \infty} \frac{9}{n^{2}} n^{2} \left[1 + \frac{1}{n}\right] = \frac{27}{6} (1)(2) - 9(1) = 9 - 9 = 0$$
2. Evaluate $\int \frac{x^{3} + 2x + 1}{x^{4}} dx$

Solution:

Step:1
$$\int \frac{x^3 + 2x + 1}{x^4} dx = \int \left(\frac{1}{x} + \frac{2}{x^3} + \frac{1}{x^4}\right) dx$$
$$= \int \left(\frac{1}{x} + 2x^{-3} + x^{-4}\right) dx$$
$$= \log x + 2\frac{x^{-2}}{(-2)} + \frac{x^{-3}}{(-3)} + C$$
$$= \log x - \frac{1}{x^2} - \frac{1}{3x^3} + C$$

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	4.10-4.15

Topic of Lecture : Substitution Rule

Introduction: The method of substitution depends on finding a suitable substitution to convert the given integral into a standard form.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Integration
- Differentiation
- Properties of Integrals

Detailed content of the Lecture:

1. Let I=
$$\int \frac{1}{(ax+b)^4} dx$$

Let I=
$$\int \frac{1}{(ax+b)^4} dx$$

Put
$$u = ax + b$$
; $du = a dx$; $\frac{du}{a} = dx$

$$I = \int \frac{1}{u^4} \frac{du}{a} = \frac{1}{a} \int u^{-4} du = \frac{1}{a} \left(\frac{u^{-3}}{-3} \right) + C$$

2. Let $I = \int (x+1)\sqrt{2x+x^2} dx$

Solution:

Let I=
$$\int (x+1)\sqrt{2x+x^2} dx$$

Put
$$u = 2x + x^2$$
; $du = (2 + 2x)dx = 2(1 + x)dx$; $\frac{du}{2} = (1 + x)dx$
 $\therefore I = \int \sqrt{u} \frac{du}{2} = \frac{1}{2} \int u^{1/2} du = \frac{1}{2} \frac{u^{3/2}}{(3/2)} + C$
 $= \frac{1}{3} u^{3/2} + C = \frac{1}{3} (2x + x^2)^{3/2} + C$

3. Let
$$I = \int \frac{x^2}{\sqrt{x+5}} dx$$

Solution:

Let
$$I = \int \frac{x^2}{\sqrt{x+5}} dx$$

Put $u = \sqrt{x+5}$; $du = \frac{1}{2\sqrt{x+5}} dx$; $2du = \frac{1}{\sqrt{x+5}} dx$; $dx = 2u \ du$
 $u^2 = x+5 \implies x = u^2 - 5 \implies x^2 = (u^2 - 5)^2 = u^4 - 10u^2 + 25$
 $\therefore I = \int (u^4 - 10u^2 + 25)2 \ du = 2 \int (u^4 - 10u^2 + 25) du$
 $= 2 \left[\frac{u^5}{5} - 10 \frac{u^3}{3} + 25u \right] + C$
 $= \frac{2}{5} (x+5)^{5/2} - \frac{20}{3} (x+5)^{3/2} + 50 (x+5)^{1/2} + C$

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	4.36-4.40

Topic of Lecture : Integration by parts

Introduction: Integration by parts is a technique for performing indefinite integration $\int u dv$ or definite integration $\int_a^b u dv$ by expanding the differential of a product of functions d(uv) and expressing the original integral in terms of a known integral $\int v du$.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Product Rule for differentiation
- Definite Integrals
- Bernoulli's formula

Detailed content of the Lecture:

1. Evaluate $\int (\log x)^2 dx$ Solution: Let $u = (log x)^2$ dv = dx $du = 2 \log x \left(\frac{1}{x}\right) dx$ $v = \int dx = x$ $\int u dv = uv - \int v du$ $\int (\log x)^2 dx = (\log x)^2 x - \int x 2 \log x \left(\frac{1}{x}\right) dx$ $=(\log x)^2 x - 2 \int \log x \, dx - \dots (1)$ Take $\int \log x \, dx$ Let $u = \log x$ dv = dx $du = \left(\frac{1}{x}\right) dx$ $v = \int dx = x$ $\int u dv = uv - \int v du$ $\int \log x \, dx = (\log x)x - \int x \left(\frac{1}{x}\right) dx$ $=x(\log x) - \int dx$ $=x(\log x) - x + C$ $(1) \rightarrow \int (\log x)^2 dx = x (\log x)^2 - 2[x(\log x) - x] + C$ 2. Evaluate $\int e^x \cos x dx$ Solution: $I = \int e^x \cos x dx$ Let $u = e^x$ $dv = \cos x \, dx$ $du = e^x dx$ $v = \int \cos x \, dx = \sin x$ $\int u dv = uv - \int v du$ $I = \int e^x \cos x dx = e^x \sin x - \int \sin x e^x dx - \dots$ (1) Take $\int e^x \sin x \, dx$ $dv = \sin x \, dx$ Let $u = e^x$ $du = e^x dx$ $v = \int \sin x dx = -\cos x$ $\int u dv = uv - \int v du$ $\int e^{x} \sin x \, dx = e^{x} (-\cos x) - \int (-\cos x) e^{x} dx$ $=e^{x}(-\cos x) + \int \cos x e^{x} dx$ $=e^{x}(-\cos x)+I$ $I = e^x \sin x - [e^x(-\cos x) + I] + C_1$ $(1) \rightarrow$ $I=e^x \sin x + e^x (\cos x) - I + C_1$ $2 I = e^x \sin x + e^x (\cos x) + C_1$ $I = \frac{e^x}{2} [\sin x + \cos x] + C$ where $C = \frac{C_1}{2}$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=tGu-764KHCk

https://www.youtube.com/watch?v=cXgDjCO96Ug

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	

Topic of Lecture : Trigonometric Integrals

Introduction: In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is featured in Trigonometric Substitution.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Product Rule for differentiation
- Definite Integrals
- Bernoulli's formula
- Trigonometric Identities

Detailed content of the Lecture:

1. Evaluate $\int \tan^{-1} x \, dx$, Also find $\int_0^1 \tan^{-1} x \, dx$.

Solution:

Let
$$u = \tan^{-1}x$$
 $dv = dx$
 $du = \frac{1}{1+x^2} dx$ $v = \int dx = x$
 $\int u dv = uv - \int v du$
 $\int \tan^{-1}x dx = x\tan^{-1}x - \int x \left(\frac{1}{1+x^2}\right) dx$
 $= x\tan^{-1}x - \int \left(\frac{x}{1+x^2}\right) dx$ -----(1)
Take $\int \left(\frac{x}{1+x^2}\right) dx$
Let $t = 1+x^2$ $dt = 2xdx$

$$\int \left(\frac{x}{1+x^2}\right) dx = \int \frac{1}{t} \frac{1}{2} dt = \frac{1}{2} \int \frac{1}{t} dt = \frac{1}{2} \log t = \frac{1}{2} \log \frac{1}{2} (1+x^2)$$

(1) $\rightarrow \int \tan^{-1}x \, dx = x \tan^{-1}x - \frac{1}{2} \log(1 + x^2) + C$ -----(2)

To find $\int_0^1 \tan^{-1} x \, dx$

$$(2) \rightarrow \int_0^1 \tan^{-1} x \, dx = [x \tan^{-1} x]_0^1 - \left[\frac{1}{2} \log(1 + x^2)\right]_0^1$$
$$= \tan^{-1} 1 - 0 - \left[\frac{1}{2} \log 2 - \frac{1}{2} \log 1\right]$$
$$= \frac{\pi}{4} - \frac{1}{2} \log 2 \qquad [\log 1 = 0]$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=lTqnlihOC4o

https://www.youtube.com/watch?v=flvhNBoOsiA

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	

Topic of Lecture : Trigonometric Integrals

Introduction: In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is featured in Trigonometric Substitution.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Product Rule for differentiation
- Definite Integrals
- Bernoulli's formula
- Trigonometric Identities

Detailed content of the Lecture:

1. Find the reduction formula for $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$.

Let
$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx$$
-----(1)

(1)
$$\rightarrow$$
 $I_n = \left[\frac{-1}{n}\cos x \sin^{n-1}x\right]_0^{\frac{\pi}{2}} + \frac{n-1}{n} \int_0^{\frac{\pi}{2}} \sin^{n-2}x dx$
=(0-0)+ $\frac{n-1}{n}I_{n-2}$
 $I_n = \frac{n-1}{n}I_{n-2}$

$$I_{n-2} = \frac{n-1}{n} I_{n-4}$$

$$I_n = \{ \frac{\frac{n-1}{n}}{\frac{n-1}{n}} \frac{\frac{n-3}{n-2}}{\frac{n-3}{n-2}} \frac{\frac{n-5}{n-4}}{\frac{n-5}{n-4}} \frac{\dots}{\dots} \frac{\frac{1}{2}I_0}{\frac{2}{3}I_1} \frac{\text{(if n is even)}}{\text{(if n is odd)}} -\dots -(2)$$

From (2), put n=0,

$$I_0 = \int_0^{\frac{\pi}{2}} dx = [x]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$$

$$I_1 = \int_0^{\frac{\pi}{2}} \operatorname{sinxdx} = \left[-\cos x\right]_0^{\frac{\pi}{2}} = (-0) - (-1) = 1$$

$$(2) \to I_n = \{ \frac{\frac{n-1}{n}}{\frac{n-1}{n}} \ \frac{\frac{n-3}{n-2}}{\frac{n-3}{n-2}} \ \frac{\frac{n-5}{n-4}}{\frac{n-5}{n-4}} \ \frac{\dots}{\frac{2}{3}} \ \frac{(\text{if n is even })}{(\text{if n is odd })}.$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=lTqnlihOC4o

https://www.youtube.com/watch?v=flvhNBoOsiA

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1.	Grewal. B. S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	

Tutorial on Substitution Rule

Introduction: The method of substitution depends on finding a suitable substitution to convert the given integral into a standard form.

Prerequisite knowledge for Complete understanding and learning of Topic :

- Integration
- Differentiation
- Properties of Integrals

Detailed content of the Lecture:

1. Let
$$I = \int \frac{x^2}{\sqrt{x+5}} \, dx$$

Solution:

Step:1 Let $I = \int \frac{x^2}{\sqrt{x+5}} dx$

Put
$$u = \sqrt{x+5}$$
; $du = \frac{1}{2\sqrt{x+5}} dx$; $2du = \frac{1}{\sqrt{x+5}} dx$; $dx = 2u du$

Step: 2
$$u^2 = x + 5 \implies x = u^2 - 5 \implies x^2 = (u^2 - 5)^2 = u^4 - 10u^2 + 25$$

Step:3
$$\therefore I = \int (u^4 - 10u^2 + 25) 2 \, du = 2 \int (u^4 - 10u^2 + 25) du$$

$$= 2\left[\frac{u^5}{5} - 10\frac{u^3}{3} + 25u\right] + C$$
$$= \frac{2}{5}(x+5)^{5/2} - \frac{20}{3}(x+5)^{3/2} + 50(x+5)^{1/2} + C$$

2. Evaluate $\int e^x \cos x dx$

Solution: Step:1

 $I = \int e^x \cos x dx$ Let $u = e^x$ $dv = \cos x \, dx$ **Step:2** $du = e^{x} dx$ $v = \int \cos x dx = \sin x$ $\int u dv = uv - \int v du$ $I = \int e^x \cos x dx = e^x \sin x - \int \sin x e^x dx - (1)$ Take $\int e^x \sin x \, dx$ Let $u = e^x$ $dv = \sin x \, dx$ Step:3 $du = e^{x} dx$ $v = \int \sin x dx = -\cos x$ $\int u dv = uv - \int v du$ $\int e^x \sin x \, dx = e^x (-\cos x) - \int (-\cos x) e^x dx$ $=e^{x}(-\cos x) + \int \cos x e^{x} dx$ $=e^{x}(-\cos x) + I$ $I = e^x \sin x - [e^x(-\cos x) + I] + C_1$ $(1) \rightarrow$ $I=e^x \sin x + e^x (\cos x) - I + C_1$ $2 I = e^x \sin x + e^x (\cos x) + C_1$ $I = \frac{e^x}{2} [\sin x + \cos x] + C$ where $C = \frac{C_1}{2}$

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	4.30-4.45

Topic of Lecture : Integration of rational functions by partial fractions

Introduction: The integration of rational functions in one variable reduces, by the division algorithm, to that of proper fractions, which are then handled by expressing them as partial fractions. Each proper fraction decomposes as a sum of simple proper fractions called partial fractions, each of which is easily integrated.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 1. Partial fractions
- 2. Rational functions
- 3. Integration

4. Division algorithm

Detailed content of the Lecture:

1. Integration of rational functions by partial fraction $\int \frac{\sec^2 x}{\tan^2 x + 3\tan x + 2} dx$

Solution:

Put $u = \tan x$; $du = \sec^2 x \, dx$ $\therefore I = \int \frac{1}{u^2 + 3u + 2} \, du$ $= \int \frac{1}{(u+1)(u+2)} \, du$ $= \int \left(\frac{1}{u+1} - \frac{1}{u+2}\right) \, du$ $= \log(u+1) - \log(u+2) + c$ $= \log(\tan x + 1) - \log(\tan x + 2) + c$

$$\int \frac{\sec^2 x}{\tan^2 x + 3\tan x + 2} \, dx = \log\left(\frac{1 + \tan x}{2 + \tan x}\right) + c$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=daYVWmS9apI

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	

Topic of Lecture : Integration of rational functions by partial fractions

Introduction: The integration of rational functions in one variable reduces, by the division algorithm, to that of proper fractions, which are then handled by expressing them as partial fractions. Each proper fraction decomposes as a sum of simple proper fractions called partial fractions, each of which is easily integrated.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 5. Partial fractions
- 6. Rational functions
- 7. Integration

8. Division algorithm

Detailed content of the Lecture:

1. Integration of rational functions by partial fraction $\frac{1}{(x+1)(x+2)}$

Solution:

$$\frac{1}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$
(1)
$$1 = A(x+2) + B(x+1)$$

Put x = -1, we get

$$1 = A(-1+2) + B(-1+1)$$
$$A = 1$$

Put x = -2, we get

$$1 = A(-2+2) + B(-2+1)$$
$$B = -1$$

(1) \Rightarrow

$$\left(\frac{1}{(x+1)(x+2)} = \frac{1}{(x+1)} + \frac{-1}{(x+2)}\right)$$
$$\int \frac{1}{(x+1)(x+2)} dx = \int \frac{1}{(x+1)} dx + \int \frac{-1}{(x+2)} dx$$
$$= \log(x+1) - \log(x+2) + c$$
$$\frac{1}{(x+1)(x+2)} = \log\left(\frac{x+1}{x+2}\right) + c$$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=daYVWmS9apI

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1.	Grewal. B. S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	

Tutorial on Integration of rational functions by partial fractions

Introduction: The integration of rational functions in one variable reduces, by the division algorithm, to that of proper fractions, which are then handled by expressing them as partial fractions. Each proper fraction decomposes as a sum of simple proper fractions called partial fractions, each of which is easily integrated.

Video Content / Details of website for further learning (if any): https://youtu.be/Zg4dJVvwRko

https://www.youtube.com/watch?v=bMnMzNKL9Ks

Important Books/Journals for further learning including the page nos.:

	Sl.No	Author(s)	Title of the Book	Publisher	Page.No
ĺ	1	Groupel D.S.	Higher Engineering	Khanna	4.50-4.65
	1. Grewal. B.S	Mathematics, 43 rd Edition	Publications, Delhi	4.30-4.03	

Topic of Lecture : Improper Integrals

Introduction: In a regular definite integral $\int_a^b f(x)dx$, it is assumed that the limit of integration are finite and that the integrand f(x) is continuous for every value of x in the interval $a \le x \le b$. If atleast one of these conditions is violated, then the integral is known as an improper integral.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 1. Improper Integrals
- 2. Integration
- 3. Convergent & Divergent

Detailed content of the Lecture:

1. Evaluate
$$\int_1^\infty \frac{\log x}{x} dx$$

Solution:

Put
$$t = \log x$$
; $dt = \frac{1}{x} dx$

$$f \cdot \int \frac{\log x}{x} dx = \int t dt$$
$$= \frac{t^2}{2}$$
$$= \frac{(\log x)^2}{2}$$

$$\therefore \int_{1}^{\infty} \frac{\log x}{x} \, dx = \left[\frac{(\log x)^2}{2}\right]_{1}^{\infty}$$

$$= \infty - 0$$

$$\therefore \int_{1}^{\infty} \frac{\log x}{x} \, dx = \infty$$

 $\therefore \int_1^\infty \frac{\log x}{x} dx$ is divergent.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=d_CnAKmQOKE

Important Books/Journals for further learning including the page nos.:

S.No	Author(s)	Title of the Book	Publisher	Page nos
1	James Stewart	Calculus with Early Transcendental Functions	Cengage Learning, New Delhi	

Unit - V Multiple Integrals

Topic of Lecture : Double integrals in Cartesian coordinates

Introduction : When we defined the double integral for a continuous function in rectangular coordinates—say, g over a region R in the xy-plane—we divided R into subrectangles with sides parallel to the coordinate axes. These sides have either constant x-values and/or constant y-values.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 1. Plane
- 2. Integration
- 3. Limit substitution

Detailed content of the Lecture:

1. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + y^2) \, dy \, dx$

Solution :

$$\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx = \int_{0}^{1} (\int_{0}^{x^{2}} (x^{2} + y^{2}) dy) dx$$
$$= \int_{0}^{1} \left[x^{2}y + \frac{y^{3}}{3} \right]_{0}^{x^{2}}$$
$$= \int_{0}^{1} (x^{4} + \frac{x^{6}}{3}) dx$$
$$= \left[\frac{x^{5}}{5} + \frac{1}{3} \frac{x^{7}}{7} \right]_{0}^{1}$$
$$= \frac{1}{5} + \frac{1}{21}$$
$$= \frac{21 + 5}{105}$$
$$= \frac{26}{105}$$

2. Evaluate $\int_0^a \int_0^b (x+y) dx dy$ Solution :

$$\int_{0}^{a} \int_{0}^{b} (x+y) \, dx \, dy = \int_{0}^{a} \int_{0}^{b} (x \, dx + y \, dx) \, dy$$

$$= \int_{0}^{a} \left[\frac{x^{2}}{2} + yx \right]_{0}^{b} dy$$
$$= \int_{0}^{a} \left[\frac{b^{2}}{2} + yb \right] dy$$
$$= \left[\frac{b^{2}y}{2} + \frac{y^{2}b}{2} \right]_{0}^{a}$$
$$= \frac{ab^{2}}{2} + \frac{a^{2}b}{2}$$

$$= \frac{ab^2 + a^2b}{2}$$

3. Evaluate $\int_0^1 \int_0^{\sqrt{x}} xy(x+y) dx dy$. Solution :

$$\int_{0}^{1} \int_{0}^{\sqrt{x}} xy(x+y) \, dx \, dy = \int_{0}^{1} \int_{0}^{\sqrt{x}} (x^{2}y + xy^{2}) \, dy \, dx$$

$$= \int_{0}^{1} \left[\frac{x^{2}y^{2}}{2} + \frac{xy^{3}}{3} \right]_{x}^{\sqrt{x}} \, dx$$

$$= \int_{0}^{1} \left[\frac{x^{3}}{2} + \frac{x^{\frac{5}{2}}}{3} - \frac{x^{4}}{2} - \frac{2x^{4}}{3} \right] \, dx$$

$$= \left[\frac{x^{4}}{8} + \frac{1}{3} \frac{x^{\frac{7}{2}}}{\frac{7}{2}} - \frac{1}{2} \frac{x^{5}}{5} - \frac{1}{3} \frac{x^{5}}{5} \right]_{0}^{1}$$

$$= \left[\frac{1}{8} + \frac{2}{21} - \frac{1}{10} - \frac{1}{15} \right]$$

$$= \frac{3}{56}$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=sQM-8Oj4Ecg

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Erwin Kreyszig	Advanced Engineering Mathematics, 9 th Edition	John Wiley and Sons, New Delhi	5.10-5.20

Topic of Lecture : Double integrals in Cartesian coordinates

Introduction : When we defined the double integral for a continuous function in rectangular coordinates—say, g over a region R in the xy-plane—we divided R into subrectangles with sides parallel to the coordinate axes. These sides have either constant x-values and/or constant y-values.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 4. Plane
- 5. Integration
- 6. Limit substitution

Detailed content of the Lecture:

1. Evaluate $\int_0^a \int_0^b (x+y) \, dx \, dy$

Solution :

$$\int_{0}^{a} \int_{0}^{b} (x+y) \, dx \, dy = \int_{0}^{a} \int_{0}^{b} (x \, dx + y \, dx) \, dy$$
$$= \int_{0}^{a} \left[\frac{x^{2}}{2} + yx \right]_{0}^{b} \, dy$$
$$= \int_{0}^{a} \left[\frac{b^{2}}{2} + yb \right] \, dy$$

$$= \left[\frac{b^2 y}{2} + \frac{y^2 b}{2}\right]_0^a$$
$$= \frac{ab^2}{2} + \frac{a^2 b}{2}$$
$$= \frac{ab^2 + a^2 b}{2}$$

2. Evaluate $\int \int xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$ Solution :

Given $x^2 + y^2 = a^2$ $x^2 = a^2 - v^2$ $x = \pm \sqrt{a^2 - y^2}$ We need positive Quadrant $x = \sqrt{a^2 - y^2}$ x varies from 0 to $\sqrt{a^2 - y^2}$, y varies from 0 to a Required area = $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} xy dx dy$ $= \int_0^a \left[y \frac{x^2}{2} \right]_0^{\sqrt{a^2 - y^2}} dy$ $= \int_{a}^{a} \frac{y(a^2 - y^2)}{2} dy$ $= \int_{0}^{a} \frac{(ya^2 - y^3)}{2} dy$ $=\frac{1}{2}\left[\frac{a^2y^2}{2}-\frac{y^4}{2}\right]_a^a$ $=\frac{1}{2}\left[\frac{a^4}{2}-\frac{a^4}{4}\right]$ $=\frac{1}{2}[\frac{a^4}{4}]$ $= \frac{a^4}{8} sq.u$ Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=sQM-8Oj4Ecg Important Books/Journals for further learning including the page nos.: A (1 Title f th D . Dublich D ЪT

1.Erwin KreyszigAdvanced Engineering Mathematics, 9th EditionJohn Wiley and Sons, New Delhi5.21-5.30		SI.NO	Author(s)	Title of the Book	Publisher	Page.No
		1.		Engineering Mathematics, 9 th	Sons, New	5.21-5.30
Tutorial on Double integrals in Cartesian coordinates	Tutorial	l on Do	uble integrals in	n Cartesian coordinates		

Introduction: When we defined the double integral for a continuous function in rectangular coordinates—say, g over a region R in the xy-plane—we divided R into subrectangles with sides parallel to the coordinate axes. These sides have either constant x-values and/or constant y-values.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 7. Plane
- 8. Integration
- 3. Limit substitution
- **Detailed content of the Lecture:**
 - 1. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + y^2) \, dy \, dx$

Solution:

Step:1
$$\int_0^1 \int_0^{x^2} (x^2 + y^2) \, dy \, dx = \int_0^1 (\int_0^{x^2} (x^2 + y^2) \, dy) \, dx$$

$$= \int_0^1 \left[x^2 y + \frac{y^3}{3} \right]_0^{x^2}$$

$$= \int_0^1 (x^4 + \frac{x^6}{3}) \, dx$$

$$= \left[\frac{x^5}{5} + \frac{1}{3} \frac{x^7}{7} \right]_0^1$$
Step:2 $= \frac{1}{5} + \frac{1}{21} = \frac{21+5}{105} = \frac{26}{105}$

2. Evaluate
$$\int_0^a \int_0^b (x+y) \, dx \, dy$$

Solution Step:1 $\int_0^a \int_0^b (x+y) dx dy = \int_0^a \int_0^b (x dx + y dx) dy$ ٦b

Step:2

$$= \int_{0}^{a} \left[\frac{x^{2}}{2} + yx \right]_{0}^{b} dy$$

$$= \int_{0}^{a} \left[\frac{b^{2}}{2} + yb \right] dy$$

$$= \left[\frac{b^{2}y}{2} + \frac{y^{2}b}{2} \right]_{0}^{a} = \frac{ab^{2}}{2} + \frac{a^{2}b}{2} = \frac{ab^{2} + a^{2}b}{2}$$

3. Evaluate $\int_0^1 \int_0^{\sqrt{x}} xy(x+y) dx dy$

Step: 1 $\int_0^1 \int_0^{\sqrt{x}} xy(x+y) \, dx \, dy = \int_0^1 \int_0^{\sqrt{x}} (x^2y + xy^2) \, dy \, dx$ Solution:

$$= \int_{0}^{1} \left[\frac{x^{2}y^{2}}{2} + \frac{xy^{3}}{3} \right]_{x}^{\sqrt{x}} dx$$

$$= \int_{0}^{1} \left[\frac{x^{3}}{2} + \frac{x^{\frac{5}{2}}}{3} - \frac{x^{4}}{2} - \frac{2x^{4}}{3} \right] dx$$

$$= \left[\frac{x^{4}}{8} + \frac{1}{3} \frac{x^{\frac{7}{2}}}{\frac{7}{2}} - \frac{1}{2} \frac{x^{5}}{5} - \frac{1}{3} \frac{x^{5}}{5} \right]_{0}^{1}$$

$$= \left[\frac{1}{8} + \frac{2}{21} - \frac{1}{10} - \frac{1}{15} \right]$$

$$= \frac{3}{56}$$
4. Evaluate $\int_{0}^{1} \int_{0}^{2} e^{x+y} dx dy$

Solution:	:	Step: 1
-----------	---	---------

$$\int_{0}^{1} \int_{0}^{2} e^{x+y} dx dy = \int_{0}^{1} \int_{0}^{2} e^{x} e^{y} dx dy$$

$$= \int_0^1 e^y dy \int_0^2 e^x dx$$

= $[e^y]_0^1 [e^x]_0^2$
= $(e^1 - 1)(e^2 - 1)$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Step: 2

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	5.10-5.25

Topic of Lecture : Change of order of integration

Introduction :

To change order of integration, we need to write an integral with order dydx. This means that x is the variable of the outer integral. Its limits must be constant and correspond to the total range of x over the region D.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 1. Integration
- 2. Path
- 3. Limit Substitution

Detailed content of the Lecture:

1. Change the order of integration $\int_0^a \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} dx dy$ and hence evaluate it.

Solution :

The region of integration is bounded by y = 0, y = a, $x = a - \sqrt{a^2 - y^2}$ and $a + \sqrt{a^2 - y^2}$

Here *y* varies from y = 0 to y = a and *x* varies from $x = a - \sqrt{a^2 - y^2}$ to

x

$$=a+\sqrt{a^2-y^2}$$

Take,
$$x = a + \sqrt{a^2 - y^2}$$

 $x - a = \sqrt{a^2 - y^2}$
 $(x - a)^2 = a^2 - y^2$
 $(x - a)^2 + y^2 - a^2$

This is a circle whose centre is (*a*, 0) and radius is "a"

here, y = 0 to y = a represents horizontal path and $x = a - \sqrt{a^2 - y^2}$ to $x = a + \sqrt{a^2 - y^2}$ represents horizontal strip PQ sliding area.

Changing the order of integration is nothing but to change the Horizontal path into Vertical path and then to change the Horizontal strip PQ into Vertical strip RS.

Now, x = 0 to x = 2a represents Vertical path and y = 0 to $y = \sqrt{a^2 - (x - a)^2}$ represents Vertical

strip RS sliding area.

Hence, by changing the order, we get

$$\int_{0}^{a} \int_{a-\sqrt{a^{2}-y^{2}}}^{2a} dx dy = \int_{0}^{2a} \int_{0}^{\sqrt{a^{2}-(x-a)^{2}}} dx dy$$
$$= \int_{0}^{2a} [y]_{y=0}^{y=\sqrt{a^{2}-(x-a)^{2}}} dx$$
$$= \int_{0}^{2a} \sqrt{a^{2}-(x-a)^{2}} dx$$
$$= \left[\frac{x-a}{2}\sqrt{a^{2}-(x-a)^{2}} + \frac{a^{2}}{2}\sin^{-1}\left(\frac{x-a}{a}\right)\right]_{0}^{2a}$$
$$= \left(0 + \frac{\pi a^{2}}{4}\right) - \left(0 - \frac{\pi a^{2}}{4}\right)$$
$$= \frac{\pi a^{2}}{4} + \frac{\pi a^{2}}{4}$$
$$= \frac{\pi a^{2}}{2}$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=Xe1XaIUrfL4

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	5.35-5.40

Topic of Lecture : Change of order of integration

Introduction :

To change order of integration, we need to write an integral with order dydx. This means that x is the variable of the outer integral. Its limits must be constant and correspond to the total range of x over the region D.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 4. Integration
- 5. Path
- 6. Limit Substitution

Detailed content of the Lecture:

1. Change the order of integration in the integral $\int_0^a \int_{a-y}^{\sqrt{a^2-y^2}} y dx dy$ and then evaluate it

Solution :

The region of integration is bounded by y = -a, y = a, x = 0 and $\sqrt{a^2 - y^2}$

Here *y* varies from y = -a to y = a and *x* varies from x = 0 to $x = \sqrt{a^2 - y^2}$

Take, $x = \sqrt{a^2 - y^2}$

$$x = \sqrt{a^2 - y^2}$$
$$x^2 = a^2 - y^2$$
$$x^2 + y^2 = a^2$$

This is a circle whose centre is (0,0) and radius is "a"

here, y = -a to y = a represents horizontal path and x = 0 to $x = \sqrt{a^2 - y^2}$ represents horizontal strip PQ sliding area.

Changing the order of integration is nothing but to change the Horizontal path into Vertical path and then to change the Horizontal strip PQ into Vertical strip RS.

Now, x = 0 to x = a represents Vertical path and $y = -\sqrt{a^2 - y^2}$ to $y = \sqrt{a^2 - y^2}$ represents Vertical strip RS sliding area.

Hence, by changing the order, we get

$$\int_{a}^{a} \sqrt{a^{2} - y^{2}} x dx dy = \int_{0}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} x dx dy$$
$$= \int_{0}^{a} [xy]_{y=\sqrt{a^{2} - x^{2}}}^{y=\sqrt{a^{2} - x^{2}}} dx$$
$$= \int_{0}^{a} 2x \sqrt{a^{2} - x^{2}} dx$$
$$= 2 \int_{0}^{a} x \sqrt{a^{2} - x^{2}} dx$$
$$= 2 \int_{a}^{0} t (-t dt)$$
$$= 2 \int_{a}^{0} t^{2} dt$$
$$= -\frac{2}{3} [t^{3}]_{a}^{0}$$
$$= -\frac{2}{3} [0 - a^{3}]$$
$$= \frac{2}{3} a^{3}$$

Video Content / Details of website for further learning (if any): https://www.youtube.com/watch?v=Xe1XaIUrfL4

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Higher Engineering	Khanna	
1.	Grewal. B.S	Mathematics, 43 rd	Publications,	5.26-5.40
		Edition	Delhi	
of Lectur	e : Area betwee	n two curves		

Introduction :

The area under a curve that exists between two points can be calculated by conducting a definite integral between the two points. To calculate the area under the curve y = f(x) between x = a & x = b, one must integrate y = f(x) between the limits of a and b.

Prerequisite knowledge for Complete understanding and learning of Topic : 1.Integration

- 2. Finding Limit
- 3. Limit substitution

Detailed content of the Lecture:

1. Find the area enclosed by the curves $y = x^2$ and x + y - 2 = 0

Solution :

: The required area = $\int_{-2}^{1} \int_{x^2}^{2-x} dy \, dx$

$$= \int_{-2}^{1} [y]_{x^{2}}^{y=2-x} dx$$
$$= \int_{-2}^{1} [(2-x) - x^{2}] dx$$
$$= \int_{-2}^{1} [2-x - x^{2}] dx$$
$$[x^{2} - x^{3}]^{1}$$

$$= \left[2x - \frac{\pi}{2} - \frac{\pi}{3}\right]_{-2}$$

$$= \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-4 - \frac{4}{2} - \frac{8}{3}\right)$$

$$= \frac{7}{6} - \left(-4 - 2 - \frac{8}{3}\right)$$
$$= \frac{7}{6} + 6 - \frac{8}{3}$$
$$- 7 + 36 - 16$$

$$=\frac{27}{6}$$
 square units

6

Video Content / Details of website for further learning (if any): https://www.youtube.com/channel/UC_4NoVAkQzeSaxCgm-to25A

S	.No	Author(s)	Title of the Book	Publisher	Page.No	
	1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	5.45-5.50	
utorial or	n Cha	ange of order o			1	
ntroductio		of intogration	we need to write an in	togral with order d	ludy This moons	that via
0		0	al. Its limits must be cor	0	5	
ver the re		-				
			omplete understanding	; and learning of T	Topic :	
7. Inte	gratio	on				
8. Path	ı					
	:+ C1					
		ostitution				
		t of the Lectur		<i>v</i>		
1. Cha	inge	the order of in	ntegration $I = \int_0^1 \int_{x^2}^{2-x}$	f(x, y)dxdy		
So	lutio	n:				
S	Step:	1 In the g	given interval, y varies	from $y = x^2$ to	y = 2 - x and	x varie
fro	m Ō t			2	2	
		$y = x^2$	and $x + y = 2$			
		he region of ir	tegration is in the first	quadrant bounded	d between $x^2 = y$	y and th
line		2				
C4		x + y = 2	• 1• • 1 • • • • •	1 .1 1	1	
St	ep:2		viding the region of int $a^{1} e^{\sqrt{y}}$		-	
		$\int_{0}^{1} \int_{x^{2}}^{2} f(x)$	$y)dxdy = \int_0^1 \int_0^{\sqrt{y}} f(x) dx dy = \int_0^1 \int_0^1 \int_0^{\sqrt{y}} f(x) dx dy = \int_0^1 \int$	$(y)dxdy + \int_{1}^{2} \int_{0}^{2}$	f(x,y)dxdy	
2. ∫∫	xy d	<i>xdy</i> taken ov	er the positive quadra	ant of the circle x	$c^2 + y^2 = a^2$	
		olution:		2		
St	ep:1		Given $x^2 + y^2 = a$	2		
			$x^2 = a^2 - y^2$			
			$x = \pm \sqrt{a^2 - y^2}$			
		We need p	positive Quadrant $x =$	$= \sqrt{a^2 - y^2}$		
		x varies	from 0 to $\sqrt{a^2 - y^2}$,	y varies from 0	to a	
	Ste	p:2	Required area = $\int_0^a \int$	$\int_{0}^{\sqrt{a^2-y^2}} xydxdy$		
			$=\int_0^a \left[y\frac{x^2}{2}\right]_0^{\sqrt{a^2-y^2}}$	$\int_{0}^{a} dy = \int_{0}^{a} \frac{y(a^2 - y^2)}{2}$	$\frac{dy}{dy}$	
			$=\int_0^a \frac{(ya^2-y^3)}{2} dy$	$=\frac{1}{2}\left[\frac{a^2y^2}{2}\right] - \frac{1}{2}$	$\left[\frac{y^4}{2}\right]_0^a$	
			$= \frac{1}{2} \left[\frac{a^4}{2} - \frac{a^4}{4} \right]$	$= \frac{1}{2} \left[\frac{a^4}{4} \right]$		
			$= \frac{a^4}{8}$ sq. u			
3. Fin	d the	area enclosed	I by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	= 1		
	utior		u D			
Ste	p:1	Area of	the ellipse $= 4x$ area of	f the Owednesd her	a a mai danin a tha h	orizont

x varies 0 to $\frac{a}{b}\sqrt{b^2 - y^2}$, y varies 0 to b $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2}$ $x^2 = \frac{a^2(b^2 - y^2)}{b^2}$ $x = \frac{a}{b}\sqrt{b^2 - y^2}$ Step:2 Required area $= 4\int_0^b \int_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dx dy$ $= 4\int_0^b [x]_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dy$ $= 4\int_0^b \frac{a}{b}\sqrt{b^2 - y^2} dy$ Formula $\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2}\sin^{-1}(\frac{x}{a}) + \frac{x}{2}\sqrt{a^2 - x^2}$ $= \frac{4a}{b} \left[\frac{b^2}{2}\sin^{-1}\frac{y}{b} + \frac{y}{2}\sqrt{b^2 - y^2}\right]_0^b$ $= \frac{4a}{b}x\frac{b^2}{2}x\frac{\pi}{2}$ Area $= \Pi ab \ sq. u$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
1.	Grewal. B.S	Higher Engineering Mathematics, 43 rd Edition	Khanna Publications, Delhi	5.35-5.50

Topic of Lecture : Area of double integral

Introduction :

The area under a curve that exists between two points can be calculated by conducting a definite integral between the two points. To calculate the area under the curve y = f(x) between x = a & x = b, one must integrate y = f(x) between the limits of a and b.

Prerequisite knowledge for Complete understanding and learning of Topic :

1. Integration

2. Finding Limit

3. Limit substitution

Detailed content of the Lecture:

1. Evaluate $\int \int xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$

Solution :

Given $x^2 + y^2 = a^2$

$$x^2 = a^2 - y^2$$

$$x = \pm \sqrt{a^2 - y^2}$$

We need positive Quadrant $x = \sqrt{a^2 - y^2}$

x varies from 0 to $\sqrt{a^2 - y^2}$, y varies from 0 to a

Required area
$$= \int_{0}^{a} \int_{0}^{a^{2}-y^{2}} xy dx dy$$

 $= \int_{0}^{a} \left[y \frac{x^{2}}{2} \right]_{0}^{\sqrt{a^{2}-y^{2}}} dy$
 $= \int_{0}^{a} \frac{y(a^{2}-y^{2})}{2} dy$
 $= \int_{0}^{a} \frac{(ya^{2}-y^{3})}{2} dy$
 $= \frac{1}{2} \left[\frac{a^{2}y^{2}}{2} - \frac{y^{4}}{2} \right]_{0}^{a}$
 $= \frac{1}{2} \left[\frac{a^{4}}{2} - \frac{a^{4}}{4} \right]$
 $= \frac{1}{2} \left[\frac{a^{4}}{4} \right]$
 $= \frac{a^{4}}{8} sq. u$

2. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Solution :

Area of the ellipse = 4x area of the Quadrant by considering the horizontal strip x varies 0 to $\frac{a}{b}\sqrt{b^2 - y^2}$, y varies 0 to b

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2}$$

$$x^2 = \frac{a^2(b^2 - y^2)}{b^2}$$

$$x = \frac{a}{b}\sqrt{b^2 - y^2}$$
Required area $= 4\int_0^b \int_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dx dy$

$$= 4\int_0^b [x]_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dy$$

$$= 4\int_0^b \frac{a}{b}\sqrt{b^2 - y^2} dy$$
Formula $\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2}sin^{-1}(\frac{x}{a}) + \frac{x}{2}\sqrt{a^2 - x^2}$

$$= \frac{4a}{b} \left[\frac{b^2}{2} \sin^{-1} \frac{y}{b} + \frac{y}{2} \sqrt{b^2 - y^2} \right]_0^b$$
$$= \frac{4a}{b} x \frac{b^2}{2} x \frac{\Pi}{2}$$
Area = \Pi ab sa. u

Video Content / Details of website for further learning (if any):

https://www.youtube.com/channel/UC_4NoVAkQzeSaxCgm-to25A

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Higher Engineering	Khanna	
1.	Grewal. B.S	Mathematics, 43 rd	Publications,	5.51-5.65
		Edition	Delhi	

Topic of Lecture : Triple integration in Cartesian coordinates

Introduction :

Calculation of a triple integral in Cartesian coordinates can be reduced to the consequent calculation of three integrals of one variable.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 1. Integration
- 2. Finding limit
- 3. Limit substitution
- 4. Volume integral

Detailed content of the Lecture:

1. Evaluate
$$\int_0^1 \int_0^2 \int_0^3 xyz dz dy dx$$

Solution:

$$Let I = \int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyzdzdydx$$
$$= \left[\int_{0}^{1} xdx\right] \left[\int_{0}^{2} ydy\right] \left[\int_{0}^{3} zdz\right]$$
$$= \left[\frac{x^{2}}{2}\right]_{0}^{1} \left[\frac{y^{2}}{2}\right]_{0}^{2} \left[\frac{z^{2}}{2}\right]_{0}^{3}$$
$$= \left(\frac{1}{2}\right) \cdot \left(\frac{4}{2}\right) \cdot \left(\frac{9}{2}\right)$$
$$= \frac{9}{2}$$

2. Evaluate
$$\int_0^a \int_0^b \int_0^c (x^2 + y^2 + z^2) dx dy dz$$

Solution :

Given:
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + x^{2}) dx dy dz$$
$$= \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz + \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} y^{2} dx dy dz + \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz$$
$$= I_{1} + I_{2} + I_{3} - \dots - (1)$$
$$I_{1} = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz$$
$$= \left[\int_{0}^{a} dx \right] \left[\int_{0}^{b} dy \right] \left[\int_{0}^{c} x^{2} dx \right]$$
$$= [x]_{0}^{b} [y]_{0}^{b} \left[\frac{x^{3}}{3} \right]_{0}^{c}$$
$$= (a - 0)(b - 0) \left(\frac{c^{3}}{3} - 0 \right)$$
$$= \frac{abc^{3}}{3}$$
$$I_{2} = \int_{0}^{a} \int_{0}^{b} \int_{0}^{b} y^{2} dx dy dz$$
$$= \left[\int_{0}^{a} dx \right] \left[\int_{0}^{b} y^{2} dy \right] \left[\int_{0}^{c} dx \right]$$
$$= [x]_{0}^{b} \left[\frac{y^{3}}{3} \right]_{0}^{b} [x]_{0}^{b}$$
$$= (a - 0) \left(\frac{b^{3}}{3} - 0 \right) (c - 0)$$
$$= \frac{ab^{3}c}{3}$$
$$I_{3} = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz$$
$$= \left[\int_{0}^{a} x^{2} dx \right] \left[\int_{0}^{b} dy \right] \left[\int_{0}^{c} dx \right]$$
$$= \left[\frac{x^{3}}{3} \right]_{0}^{a} [y]_{0}^{b} [x]_{0}^{b}$$
$$= \left[\frac{a^{3}}{3} - 0 \right) (c - 0)$$
$$= \frac{ab^{3}c}{3}$$
$$= \left[\frac{a^{3}}{3} - 0 \right) (b - 0)(c - 0)$$
$$= \frac{a^{3}bc}{3}$$
$$\therefore (1) \Rightarrow \qquad = \frac{abc^{3}}{3} + \frac{ab^{3}c}{3} + \frac{a^{3}bc}{3}$$

$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dxdydz = \frac{abc}{3} [a^{2} + b^{2} + c^{2}]$$
Video Content / Details of website for further learning (if any):
https://youtu.be/Gt5ApX3olN0
Important Books/Journals for further learning including the page nos.:
$$\frac{Sl.No \quad Author(s) \quad Title of the Book \quad Publisher \quad Page.No}{1. \quad Grewal. B.S} \quad Higher Engineering \\ Mathematics, 43^{rd} \quad Publications, \quad 5.61-5.70 \\ Delhi \\ \hline Tutorial on Triple integration in Cartesian coordinates can be reduced to the consequent calculation of a triple integral in Cartesian coordinates can be reduced to the consequent calculation of three integrals of one variable.
$$Frerequisite knowledge for Complete understanding and learning of Topic : 5. Integration 6. Finding limit$$$$

- 7. Limit substitution
- 8. Volume integral

Detailed content of the Lecture:

1. Evaluate $\int_0^1 \int_0^y \int_0^{x+y} dx dy dz$

Solution:

Step:1	Let I = $\int_0^1 \int_0^y \int_0^{x+y} dz dx dy$
	$=\int_0^1\int_0^y [z]_0^{x+y}dxdy$
	$=\int_0^1\int_0^y(x+y)dxdy$
	$=\int_0^1 \left[\frac{x^2}{2} + yx\right]_0^y dy$
Step:2	$= \int_0^1 (\frac{y^2}{2} + y^2) dy$
	$=\int_0^1 (\frac{3}{2}y^2) dy$
	$= \frac{3}{2} \left[\frac{y^3}{3} \right]_0^1$
	$=$ $\frac{1}{2}$

2. Evaluate $\int_0^1 \int_0^2 \int_0^3 xyz dz dy dx$

Solution:

Step:1 Let
$$I = \int_0^1 \int_0^2 \int_0^3 xyz dz dy dx$$

 $= [\int_0^1 x dx] [\int_0^2 y dy] [\int_0^3 z dz]$
Step:2 $= \left[\frac{x^2}{2}\right]_0^1 \left[\frac{y^2}{2}\right]_0^2 \left[\frac{z^2}{2}\right]_0^3$
 $= \left(\frac{1}{2}\right) \cdot \left(\frac{4}{2}\right) \cdot \left(\frac{9}{2}\right) = \frac{9}{2}$

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=6Zacf25sXhk

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Higher Engineering	Khanna	
1.	Grewal. B.S	Mathematics, 43 rd	Publications,	5.65-5.70
		Edition	Delhi	

Topic of Lecture : Triple integration in Cartesian coordinates

Introduction :

Calculation of a triple integral in Cartesian coordinates can be reduced to the consequent calculation of three integrals of one variable.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 9. Integration
- 10. Finding limit
- 11. Limit substitution
- 12. Volume integral

Detailed content of the Lecture:

3. Evaluate $\int_0^1 \int_0^y \int_0^{x+y} dx dy dz$

Solution :

Let
$$I = \int_{0}^{1} \int_{0}^{y} \int_{0}^{x+y} dz dx dy$$

= $\int_{0}^{1} \int_{0}^{y} [z]_{0}^{x+y} dx dy$
= $\int_{0}^{1} \int_{0}^{y} (x+y) dx dy$

$$= \int_{0}^{1} \left[\frac{x^{2}}{2} + yx \right]_{0}^{y} dy$$

$$= \int_{0}^{1} \left[\frac{y^{2}}{2} + y^{2} \right] dy$$

$$= \int_{0}^{1} \left[\frac{3}{2}y^{2} \right] dy$$

$$= \int_{0}^{1} \left[\frac{3}{2}y^{2} \right] dy$$

$$= \frac{3}{2} \left[\frac{y^{3}}{3} \right]_{0}^{1}$$

$$= \frac{1}{2}$$
4. Evaluate $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz$
Solution:
Given: $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz$

$$= \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz$$

$$= \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz$$

$$= \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz + \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} z^{2} dx dy dz$$

$$= \int_{1}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz + \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x^{2} dx dy dz$$

$$= \left[\int_{0}^{a} dz \right] \left[\int_{0}^{b} dy \right] \left[\int_{0}^{c} x^{2} dx \right]$$

$$= \left[z \right]_{0}^{a} \left[y \right]_{0}^{b} \left[\frac{x^{3}}{3} \right]_{0}^{c}$$

$$= (a - 0)(b - 0) \left(\frac{c^{3}}{3} - 0 \right)$$

$$= \frac{abc^{3}}{3}$$

$$I_{2} = \int_{0}^{a} \int_{0}^{b} \int_{0}^{b} y^{2} dy \right] \left[\int_{0}^{c} dx \right]$$

$$= \left[z \right]_{0}^{a} \left[y \right]_{0}^{2} \left[\frac{y^{2}}{3} \right]_{0}^{b} \left[x \right]_{0}^{c}$$

$$= (a - 0) \left(\frac{b^{3}}{3} - 0 \right) (c - 0)$$

$$= \frac{ab^{3}c}{3}$$

$$I_{3} = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} z^{2} dx dy dz$$
$$= \left[\int_{0}^{a} z^{2} dz \right] \left[\int_{0}^{b} dy \right] \left[\int_{0}^{c} dx \right]$$
$$= \left[\frac{z^{3}}{3} \right]_{0}^{a} [y]_{0}^{b} [x]_{0}^{c}$$
$$= \left(\frac{a^{3}}{3} - 0 \right) (b - 0)(c - 0)$$
$$= \frac{a^{3} bc}{3}$$
$$\therefore (1) \Rightarrow \qquad = \frac{abc^{3}}{3} + \frac{ab^{3}c}{3} + \frac{a^{3} bc}{3}$$
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz = \frac{abc}{3} [x^{2} + y^{2} + z^{2}]$$

Video Content / Details of website for further learning (if any): https://youtu.be/Gt5ApX3oIN0

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Higher Engineering	Khanna	
1.	Grewal. B.S	Mathematics, 43 rd	Publications,	5.70-5.80
		Edition	Delhi	

Topic of Lecture : Volume as triple integrals

Introduction :

Triple iterated integrals If the solid W is a cube defined by $a \le x \le b$, $c \le y \le d$, and $p \le z \le q$, then we can easily write the triple integral as an iterated integral. We could first integrate x from a to b, then integrate y from c to d, and finally integrate z from p to q, $\iiint WfdV = \int qp(\int dc(\int baf(x,y,z)dx)dy)dz$.

Prerequisite knowledge for Complete understanding and learning of Topic :

- 13. Integration
- 14. Finding limit
- 15. Limit substitution
- 16. Volume integral

Detailed content of the Lecture:

1. Find the volume of the portion of the ellipsoid $\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 1$ which has in first octant

using triple integration.

Solution :

Given $\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 1$ - - - - - - - - - - - - - (1) Volume = $\iiint dz \, dy \, dx$

To find x limit put y = 0 and z = 0 we get (line integral)

$$\frac{x^2}{a^2} = 1$$
$$x^2 = a^2$$
$$x = \pm a$$

i.e., x = 0 to x = a

To find y limit put z = 0 we get (surface integral)

$$(1) \implies \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$
$$y = \pm b \sqrt{1 - \frac{x^2}{a^2}}$$

i.e., y = 0 to $y = b\sqrt{1 - \frac{x^2}{a^2}}$ (: first octant area)

To find z limit (Volume integral)

$$(1) \Longrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
$$\frac{z^2}{c^2} = 1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

$$z = \pm c \sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}}$$

(:: first octant area)

$$i.e., \qquad z = 0 \text{ to } z = c \sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}}$$

$$Volume = \int_0^a \int_0^{b \sqrt{1 - \frac{x^2}{a^2}}} \int_0^{c \sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}}} dz \, dy \, dx$$

$$= \int_0^a \int_0^{b \sqrt{1 - \frac{x^2}{a^2}}} [z]_0^{c \sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}}} dy \, dx$$

$$= \int_0^a \int_0^{b \sqrt{1 - \frac{x^2}{a^2}}} c \sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}} \, dy \, dx$$

$$= c \int_0^a \int_0^{b \sqrt{1 - \frac{x^2}{a^2}}} \sqrt{\frac{b^2 \left(1 - \frac{x^2}{a^2}\right) - y^2}{b^2}} \, dy \, dx$$

$$= \frac{c}{b} \int_0^a \int_0^{b \sqrt{1 - \frac{x^2}{a^2}}} \sqrt{\left(\sqrt{b^2 \left(1 - \frac{x^2}{a^2}\right)}\right)^2} - y^2} \, dy \, dx$$

Video Content/Details of website for further learning (if any): https://youtu.be/Gt5ApX3oIN0

Important Books/Journals for further learning including the page nos.:

Sl.No	Author(s)	Title of the Book	Publisher	Page.No
		Higher Engineering	Khanna	
1.	Grewal. B.S	Mathematics, 43 rd	Publications,	5.71-5.80
		Edition	Delhi	