

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Definition, ADT, Types of Data Structures- Linear & Non Linear Data Structures

Introduction :

 Data structure defines a way of organizing all data items that consider not only the elements

stored but also stores the relationship between the elements.

 Data structure can divide with two types: linear and non-linear structure.

 Data structures are framework for organizing and storing information in virtual memory forms.

 Determine the various types of abstract data such as queue, stack, lists and deque,ADT.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data

 Linear data structures

 Non-linear data structures

Detailed content of the Lecture:

 Data structure in C programming language is a specialized format for organizing and storing

data.

 In general data structure types include the file, array, record, table, tree.etc..

 Data structure introduction refers to a scheme for organizing data, or in other words it is an

arrangement of data in computer's memory in such a way that it could make the data quickly

available to the processor for required calculations.

L-1
LECTURE HANDOUTS

II/III IT

 As data structure is a scheme for data organization so the functional definition of a data

structure should be independent of its implementation.

 Data structures can be classified as Simple data structure,Compound data structure, Linear data

structure, Non linear data structure.

 Linear data structures are data structures having a linear relationship between its adjacent

elements. Linked lists are examples of linear data structures.eg linked list, array

 Non-linear data structure can be constructed as a collection of randomly distributed set of data

item joined together by using a special pointer (tag). In non-linear Data structure the

relationship of adjacency is not maintained between the data items.

 The simplest type of data structure is a linear array. In computer science, an array data

structure or simply an array is a data structure consisting of a collection of elements (values or

variables), each identified by at least one array index or key.

Abstract Data Type

 An abstract data type is a set of operations for which the implementation of the data structure is

not specified anywhere in the program.

Video Content / Details of website for further learning (if any):

https://youtu.be/zWg7U0OEAoE

https://nptel.ac.in/courses/106/102/106102064/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012- Page Nos: 1-6

 Course Teacher

 Verified by HOD

https://youtu.be/zWg7U0OEAoE
https://nptel.ac.in/courses/106/102/106102064/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture:Array: Representation ofarrays, structure and Pointers, Applications of arrays

Introduction :

An array data structure, or simply an array, is a data structure consisting of a collection of elements

(values or variables), each identified by at least one array index or key.

 They are also used to implement many other data structures, such as lists and strings.

 It occupies less memory than a linked list for the same number of elements.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Memory allocation

 Data types

 Linear data structures

Detailed content of the Lecture:

Array:

 Array is a collection of variables belongings to the same data type. You can store group of data

of same data type in an array.

 Array might be belonging to any of the data types

 Array size must be a constant value.Always, Contiguous (adjacent) memory locations are used

to store array elements in memory.

 One dimensional is also known as single dimensional array where the elements be accessed in

sequential order. This type of array will be accessed by the subscript of either a column or row

now.

L-2 LECTURE HANDOUTS

II/III

IT

 When the number of dimensions specified is more than one then it is called multi dimensional

array. It includes 2D and 3D arrays.

 The size of the array is fixed. Most often this size is specified at compile time. This makes the

programmers to allocate arrays, which seems "large enough" thanrequired.

 Inserting new elements at the front is potentially expensive because existing elements need to

be shifted over to makeroom.

 Deleting an element from an array is not possible. Linked lists have their own strengths and

weaknesses, but the happen to be strong where arrays areweak.

 Generally array's allocates the memory for all its elements in one block whereas linked lists use

an entirely different strategy.

 Linked lists allocate memory for each element separately and only whennecessary.

APPLICATIONS OF ARRAYS

 Arrays are used to implement mathematical vectors and matrices, as well as otherkinds of

rectangular tables.

 Arrays are used to implement other data structures, such as lists, heaps, hash

tables, dequeues, queues and stacks.

 Arrays are also used to implement CPU Scheduling 8lgorithms

Video Content / Details of website for further learning (if any):

https://www.coursera.org/lecture/data-structures/arrays-OsBSF

https://nptel.ac.in/courses/106105085/

Important Books/Journals for further learning including the page nos.:

E.Horowitz,S.Sahni Susan ,Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- Page Nos:7,8

 Course Teacher

Verified by HOD

https://www.coursera.org/lecture/data-structures/arrays-OsBSF
https://nptel.ac.in/courses/106105085/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Structure and Pointer

Introduction :

 Structure is a collection of variables belongings to the different data type. You can store group

of data of different data type in an array.

 A pointer is a variable whose value is the address of another variable, i.e., direct address of the

memory location. Like any variable or constant, you must declare a pointer before using it to

store any variable address.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pointer

 Memory address

 Data types

Detailed content of the Lecture:

Structure

 A structure creates a data type that can be used to group items of possibly different types into a

single type. 'struct' keyword is used to create a structure.

 Nested structure in C is nothing but structure within structure. One structure can be declared

inside other structure as we declare structure members inside a structure.The structure variables

can be a normal structure variable or a pointer variable to access the data.

 An array of structures is simply an array in which each element is a structure of the same type it

referencing and subscripting of these arrays follow the same rules as simple arrays.

Syntax

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 data_type memeber;

};

L-3
LECTURE HANDOUTS

II/III IT

Advantages

 It can hold variables of different data types.

 create objects containing different types of attributes.

 It allows us to re-use the data layout across programs.

Application of structure

 It is used to implement other data structures like linked lists, stacks, queues, trees, graphs etc

Clearing screen

 Adjusting Cursor Position

 Drawing any graphics shape on the screen

 Receiving a key from the keyboard

 Finding out the list of equipment attached to the computer

Pointer

 A pointer is a variable which points to the address of another variable of any data type like int

,char ,float etc. Similarly, it have a pointer to structures, where a pointer variable can point to

the address of a structure variable.

 We have already learned that a pointer is a variable which points to the address of another

variable of any data type like int , char , float etc.

 Similarly, we can have a pointer to structures, where a pointer variable can point to the address

of a structure variable.

Syntax:

datatype *var_name;

int *ptr;

 Pointers in C language is a variable that stores/points the address of another variable. A Pointer

in C is used to allocate memory dynamically i.e. at run time. The pointer variable might be

belonging to any of the data type such as int, float, char, double, short etc.

 Pointers can be used with array and string to access elements more efficiently. We can create

function pointers to invoke a function dynamically. Types are null pointer, wild pointer and

void pointer.

Application of Pointer:

 To pass arguments by reference

 To return multiple values

 Dynamic memory allocation

 To do system level programming where memory addresses are useful

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106104128/

https://www.youtube.com/watch?v=6vT1EoPYpTQ

Important Books/Journals for further learning including the page nos.:

E.Horowitz,S.Sahni Susan,Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- Page Nos:9-15

 Course Teacher

 Verified by HOD

https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/
https://nptel.ac.in/courses/106104128/
https://www.youtube.com/watch?v=6vT1EoPYpTQ

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Dynamic Memory Allocation

Introduction :

 The process of allocating memory at runtime is known as dynamic memory allocation

Prerequisite knowledge for Complete understanding and learning of Topic:

 Memory Management Functions

 Pointers

Detailed content of the Lecture:
Dynamic Memory Allocation

 The process of allocating memory at runtime is known as dynamic memory allocation.

 Library routines known as "memory management functions" are used for allocating and freeing

memory during execution of a program.

 These functions are defined in stdlib.h.

Video Content / Details of website for further learning (if any):
https://nptel.ac.in/courses/106105171/

https://www.youtube.com/watch?v=RdY5jiIkCjE

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- Page Nos:16-18

 Course Teacher

 Verified by HOD

L-4
LECTURE HANDOUTS

II/III IT

https://nptel.ac.in/courses/106105171/
https://www.youtube.com/watch?v=RdY5jiIkCjE

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Functions and Recursion Function

Introduction :

 Recursion is an approach in which a function calls itself with an argument. Upon reaching a

termination condition, the control returns to the calling function

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pre-defined function or built-in or intrinsic function

 User defined function

Detailed content of the Lecture:

 These functions are defined in stdlib.h.

Function Description

malloc() allocates requested size of bytes and returns a void pointer pointing to the first byte of the

allocated space

calloc() allocates space for an array of elements, initialize them to zero and then returns a void

pointer to the memory

Free releases previously allocated memory

Realloc modify the size of previously allocated space

Func(int array_size)

 {

double k, a[100], *b, *c;

b = (double *) malloc(array_size * sizeof(double));

c = new double[array_size];

}

• The size of the problem often can not be determined at “compile time”.

L-5
LECTURE HANDOUTS

II/III IT

• Dynamic memory allocation is to allocate memory at “run time”.

• Dynamically allocated memory must be referred to by pointers.

Recursion function

 Recursion is an approach in which a function calls itself with an argument. Upon reaching a termination

condition, the control returns to the calling function. Ex: Factorial

SYNTAX

Advantages

 Reduce unnecessary calling of function.

 Through Recursion one can slove problems in easy way while its iterative solution is very big and complex.

Disdvantages

 Recursive solution is always logical and it is very difficult to trace.(debug and understand).

 In recursive we must have an if statement somewhere to force the function to return without the recursive call

being executed, otherwise the function will never return.

 Recursion takes a lot of stack space, usually not considerable when the program is small and running on a

PC.

 Recursion uses more processor time.

Video Content / Details of website for further learning (if any):
https://nptel.ac.in/courses/106105171/

https://www.youtube.com/watch?v=RdY5jiIkCjE

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- page nos:16-18

 Course Teacher

 Verified by HOD

https://nptel.ac.in/courses/106105171/
https://www.youtube.com/watch?v=RdY5jiIkCjE

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Linked List: Definition, Types of List, Singly Linked List operations

Introduction :

 A linked list is a non-sequential collection of data items.

 It is a dynamic data structure. For every data item in a linked list, there is an associated pointer

that would give the memory location of the next data item in the linked list.

 The data items in the linked list are not in consecutive memory locations.

 It may be anywhere, but the accessing of these data items is easier as each data item contains

the address of the next data item.

 A linked list is a non-sequential collection of data items.

 A linked list allocates space for each element separately in its own block of memory called a

"node".

 Each node contains two fields; a "data" field to store whatever element, and a "next" field

which is a pointer used to link to the next node.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pointer

 Node

 Memory address

 Linear data structure

Detailed content of the Lecture:

Single Linked list

 It is a linked list ,in which each node contains only one link field pointing to the next node in

the list.

 Each node is allocated in the heap using malloc(), so the node memory continues to exist until it

is explicitly de-allocated using free(). The front of the list is a pointer to the “start” node.

L-6
LECTURE HANDOUTS

II/III IT

 The beginning of the linked list is stored in a "start" pointer which points to the first node. The

first node contains a pointer to the second node.

 The last node in the list has its next field set to NULL to mark the end of the list.

Insertion of a Node:

 One of the most primitive operations that can be done in a singly linked list is the insertion of a

node.

 Memory is to be allocated for the new node (in a similar way that is done while creating a list)

before reading the data.

1. Inserting a node at the beginning

2. .Inserting a node at the end.

3. Inserting a node at intermediate position.

Deletion of a node

 Another primitive operation that can be done in a singly linked list is the deletion of a node.

 Memory is to be released for the node to be deleted.

1. Deleting a node at the beginning.

2. Deleting a node at the end.

3. Deleting a node at intermediate position.

Video Content / Details of website for further learning (if any):

https://youtu.be/PGWZUgzDMYI

https://nptel.ac.in/courses/106105085/

Important Books/Journals for further learning including the page nos.:

 Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012- page nos:57-65

 Course Teacher

 Verified by HOD

https://youtu.be/PGWZUgzDMYI

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Doubly Linked list operation

Introduction :

 A double linked list is a two-way list in which all nodes will have two links.

 The left link points to the predecessor node

 The right link points to the successor node. The data field stores the required data.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Linked list

 Node

 Memory allocation

 Pointer

Detailed content of the Lecture:

 It is a list in which each node has three fields namely data field, forward link and backward link

 The beginning of the double linked list is stored in a "start" pointer which points to the first

node. The first node‟s left link and last node‟s right link is set to NULL.

The basic operations in a double linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

L-7
LECTURE HANDOUTS

II/III IT

Creating a node for Double Linked List

 Double Linked List with 3 nodes

Inserting a node at the beginning

Inserting a node at the end

Inserting a node at an intermediate position:

Deleting a node at the beginning:

Deleting a node at the end:

Deleting a node at Intermediate position:

Traversal and displaying a list (Left to Right):

 To display the information, you have to traverse the list, node by node from the first node, until

the end of the list is reached. The function traverse_left_right() is used for traversing and

displaying the information stored in the list from left to right.

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by node from the first node,

until the end of the list is reached. The function traverse_right_left() is used for traversing and displaying the

information stored in the list from right to left.

Video Content / Details of website for further learning (if any):

https://youtu.be/PGWZUgzDMYI

https://nptel.ac.in/courses/106105085/

Important Books/Journals for further learning including the page nos.:

Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012- page nos:65-67

 Course Teacher

 Verified by HOD

https://youtu.be/PGWZUgzDMYI

MUTHAYAMMAL ENGINEERING

COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Circular linked list operation

Introduction :

 It is just a single linked list in which the link field of the last node points back to the address of

the first node.

 A circular linked list has no beginning and no end. It is necessary to establish a special pointer

called start pointer always pointing to the first node of the list.

 In circular linked list no null pointers are used, hence all pointers contain valid address.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Linked list(Single, Double)

 Node

 Memory allocation

 Pointer

Detailed content of the Lecture:

Circular linked list

 Circular linked list is a linked list where all nodes are connected to form a circle. There is no

NULL at the end.

L-8

LECTURE HANDOUTS

II/III IT

Basic operations in a circular double linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Creating a circular single Linked List

Inserting a node at the beginning

Inserting a node at the end:

Deleting a node at the beginning:

Deleting a node at the end:

Video Content / Details of website for further learning (if any):

https://youtu.be/PGWZUgzDMYI

https://nptel.ac.in/courses/106105085

Important Books/Journals for further learning including the page nos.:

R. F. Gilberg B. A. Forouzan Data Structures2
nd

 Edition, Thomson India2005, page nos: 22-24

 Course Teacher

 Verified by HOD

https://youtu.be/PGWZUgzDMYI

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : I [INTRODUCTION AND LIST] Date of Lecture:

Topic of Lecture: Applications of linked list

Introduction :

 Implementation of stacks and queues.

 Implementation of graphs : Adjacency list representation of graphs is most popular which

is uses linked list to store adjacent vertices

Prerequisite knowledge for Complete understanding and learning of Topic:

 Singly Linked List

 Doubly Linked List

 Circular Linked List

Detailed content of the Lecture:

 Radix sort

 Multi List

 Polynomial list

Radix sort

 Radix sort is one of the sorting algorithms used to sort a list of integer numbers in order.

 In radix sort algorithm, a list of integer numbers will be sorted based on the digits of

individual numbers.

 For example, if the largest number is a 3 digit number then that list is sorted with 3

passes.

The Radix sort algorithm is performed using the following steps

Step 1 - Define 10 queues each representing a bucket for each digit from 0 to 9.

Step 2 - Consider the least significant digit of each number in the list which is to be sorted.

Step 3 - Insert each number into their respective queue based on the least significant digit.

Step 4 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into their

respective queues.

L-9
LECTURE HANDOUTS

II/III IT

Step 5 - Repeat from step 3 based on the next least significant digit.

Step 6 - Repeat from step 2 until all the numbers are grouped based on the most significant digit.

Video Content / Details of website for further learning (if any):

www.btechsmartclass.com › data_structures › radix-sort

Important Books/Journals for further learning including the page nos.:

R. F. Gilberg B. A. Forouzan Data Structures2
nd

 Edition, Thomson India2005, page nos: 24-26

 Course Teacher

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Stack: Stack-Definitions & Concepts, Array implementation of Stack

Introduction :

 Stack is an Abstract data structure (ADT) works on the principle Last In First Out (LIFO).

 The last element add to the stack is the first element to be delete. Insertion and deletion can be

takes place at one end called TOP. It looks like one side closed tube.

 Stack implemented using array stores only a fixed number of data values

Prerequisite knowledge for Complete understanding and learning of Topic:

 Abstract data Type

 Arrays

 Linked List

Detailed content of the Lecture:

 A stack is a container of objects that are inserted and removed according to the last-in first-out

(LIFO) principle. In the pushdown stacks only two operations are allowed: push the item into

the stack, and pop the item out of the stack.

A stack is a limited access data structure - elements can be added and removed from the stack

only at the top. Push adds an item to the top of the stack, pop removes the item from the top.

L-10
LECTURE HANDOUTS

II/III IT

 The add operation of the stack is called push operation

 The delete operation is called as pop operation.

 Push operation on a full stack causes stack overflow.

 Pop operation on an empty stack causes stack underflow.

 SP is a pointer, which is used to access the top element of the stack.

 If you push elements that are added at the top of the stack

 In the same way when we pop the elements, the element at the top of the stack is deleted.

There are two operations applied on stack they are

 Push

 pop.

While performing push & pop operations the following test must be conducted on the stack.

 Stack is empty or not

 Stack is full or not

Push:

 Push operation is used to add new elements in to the stack. At the time of addition first check

the stack is full or not. If the stack is full it generates an error message "stack overflow".

Pop:

 Pop operation is used to delete elements from the stack. At the time of deletion first check the

stack is empty or not. If the stack is empty it generates an error message "stack underflow".

Array implementation of Stack Operations

Push(Value) - Inserting Value into The Stack

 In a stack, push() is a function used to insert an element into the stack. In a stack, the new

element is always inserted at top position. Push function takes one integer value as parameter

and inserts that value into the stack. It can use the following steps to push an element on to the

stack...

 Step 1 - Check whether stack is FULL. (Top == SIZE-1)

 Step 2 - If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3 - If it is NOT FULL, then increment top value by one (top++) and set stack[top] to

value (stack[top] = value).

Pop() - Delete A Value From The Stack

 In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is

always deleted from top position. Pop function does not take any value as parameter. It can use

the following steps to pop an element from the stack.

Step 1 - Check whether stack is EMPTY. (Top == -1)

Step 2 - If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!" and terminate

the function.

Step 3 - If it is NOT EMPTY, then delete stack[top] and decrement top value by one (top--).

Video Content / Details of website for further learning (if any):

https://www.wiziq.com/tutorials/data-structure

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 78-79

Course Teacher

 Verified by HOD

https://www.wiziq.com/tutorials/data-structure

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Linked list implementation of Stack, Operations on Stacks

Introduction :

 Stack implemented using linked list, the nodes are maintained non-contiguously in the memory.

Each node contains a pointer to its immediate successor node in the stack

Prerequisite knowledge for Complete understanding and learning of Topic:

 Stack

 Nodes

 Array

 Linked list

Detailed content of the Lecture:

Linked list implementation of Stack Operations

Push(Value) - Inserting an Element into The Stack

 It can use the following steps to insert a new node into the stack.

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether stack is Empty (top == NULL)

 Step 3 - If it is Empty, then set newNode → next = NULL.

 Step 4 - If it is Not Empty, then set newNode → next = top.

 Step 5 - Finally, set top = newNode.

L-11
LECTURE HANDOUTS

II/III IT

Pop() – Deleting an Element From A Stack

 It can use the following steps to delete a node from the stack...

 Step 1 - Check whether stack is Empty (top == NULL).

 Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and

terminate the function

 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

 Step 4 - Then set 'top = top → next'.

 Step 5 - Finally, delete 'temp'. (free(temp)).

Video Content / Details of Itbsite for further learning (if any):

https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 79-86

 Course Teacher

 Verified by HOD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Applications of Stacks, Polish Expression, Reverse Polish Expression

Introduction :

 Stacks can be used to check parenthesis matching in an expression.

 Stacks can be used for Conversion from one form of expression to another.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Stack operation

 Expression

 Recursion function

 Stack

Detailed content of the Lecture:

 Polish Expression

 Reverse Polish Expression

 Recursion

 Tower of Hanoi

Recursion

 The process in which a function calls itself directly or indirectly is called recursion and the

corresponding function is called as recursive function.

 Examples of such problems are Towers of Hanoi

Tower of Hanoi :

 It is a mathematical puzzle where we have three rods and n disks.

 The objective of the puzzle is to move the entire stack to another rod, obeying the following

simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and placing it on top of

another stack

 i.e. a disk can only be moved if it is the uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.

L-12
LECTURE HANDOUTS

II/III IT

http://quiz.geeksforgeeks.org/c-program-for-tower-of-hanoi/

Polish Expression:

Expressions are divided into Three types
 Infix Expression

 Postfix Expression

 Prefix Expression

Infix Expression

In infix expression, operator is used in between the operands.

Postfix Expression

In postfix expression, operator is used after operands that the "Operator follows the Operands".

Prefix Expression

In prefix expression, operator is used before operands that the "Operands follows the Operator

Conversion of infix expression to postfix expression

 Scan the infix expression from left to right.

 If the scanned symbol is left parenthesis, push it onto the stack.

 If the scanned symbol is an operand, then place directly in the postfix expression (output).

 If the symbol scanned is a right parenthesis, then go on popping all the items from the stack and

place them in the postfix expression till we get the matching left parenthesis.

 If the scanned symbol is an operator, then go on removing all the operators from the stack and

place them in the postfix expression, if and only if the precedence of the operator which is on the

top of the stack is greater than (or equal) to the precedence of the scanned operator and push the

scanned operator onto the stack otherwise, push the scanned operator onto the stack.

Symbol Postfix String Stack

A A

+ A +

B A B +

* A B + *

C A B C -

- A B C * + -

D A B C * + D -

/ A B C * + D - /

E A B C * + D E - /

* A B C * + D E / - *

H A B C * + D E / H - *

End of

string
A B C * + D E / H * -

The input is now empty. Pop the output symbols from the

stack until it is empty

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 87-92

 Course Teacher

 Verified by HOD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Reverse Polish Expression and their Compilation,

Introduction :

 When a function calls itself, it’s called Recursion.

 Tower of Hanoi is a mathematical puzzle where we have three rods and n disks.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Infix Expression

 Prefix Expression

 Postfix Expression

Detailed content of the Lecture:

Polish Notation:

There are Three Types of Polish Notation.

 1. Prefix = +ab

 2. Infix = a+b

 3. Postfix =ab+

Solve the Following Expression For Both Prefix and Postfix:

 (A+B) / C * D – E

Prefix:

 {+ A B } / C * D - E

 = { / * A B C } * D - E

 = { * / + A B C D } - E

 ={ - * / + A B C D E }

Postfix : = { A B + } / C * D - E

 = { A B + C / } * D - E

 = { A B + C / D * } - E

 = { A B + C / D * E - }

L-13
LECTURE HANDOUTS

II/III IT

Video Content / Details of Itbsite for further learning (if any):

https://en.wikipedia.org/wiki/Reverse_Polish_notation

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 92-94

Course Teacher

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Queue: Representation of Queue

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "en-queued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data structure

 Indices

 Pointers

Detailed content of the Lecture:

 Queue is a linear data structure where the first element is inserted from one end

called REAR and deleted from the other end called as FRONT.

 Front points to the beginning of the queue and Rear points to the end of the queue.

 Queue follows the FIFO (First - In - First Out) structure.

L-14 LECTURE HANDOUTS

II/III IT

 Enqueue means to insert an item into the back of the queue.

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element and success.

 Dequeue means removing the front item. The picture demonstrates the FIFO access. The

difference between stacks and queues is in removing.

Step 1 − Check if the queue is full.

Step 2 − If the queue is full, produce overflow error and exit.

Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

Step 4 − Add data element to the queue location, where the rear is pointing and return

success.

Operations on Queue

Operations Description

enqueue() This function defines the operation for adding an element into queue.

dequeue() This function defines the operation for removing an element from

queue.

init() This function is used for initializing the queue.

Front Front is used to get the front data item from a queue.

Rear Rear is used to get the last item from a queue.

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106/106/106106127/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 95,96

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Array implementation of Queue Operations

Introduction :

 We can represent a queue as a linked list.

 In a queue data is deleted from the front end and inserted at the rear end.

 We can perform similar operations on the two ends of a list.

 We use two pointers front and rear for our linked queue implementation.

Prerequisite knowledge for Complete understanding and learning of Topic:

 linked list

 pointers

Detailed content of the Lecture:

 A queue data structure can be implemented using a linked list data structure.

 The queue which is implemented using a linked list can work for an unlimited number of

values.

 That means, queue using linked list can work for the variable size of data (No need to fix

the size at the beginning of the implementation).

 The Queue implemented using linked list can organize as many data values as we want.

L-15 LECTURE HANDOUTS

II/III IT

Queue Operations using Array

 Queue data structure using array can be implemented as follows.

 Before implement actual operations, first follow the below steps to create an empty queue.

Step 1 - Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

Step 2 - Declare all the user defined functions which are used in queue implementation.

Step 3 - Create a one dimensional array with above defined SIZE (int queue[SIZE])

Step 4 - Define two integer variables 'front' and 'rear' and initialize both with '-1'.

(int front = -1, rear = -1)

Step 5 - Then implement main method by displaying menu of operations list and make suitable

function calls to perform operation selected by the user on queue.

enQueue(value) - Inserting value into the queue

 In a queue data structure, enQueue() is a function used to insert a new element into the queue.

 In a queue, the new element is always inserted at rear position.

 The enQueue() function takes one integer value as a parameter and inserts that value into the

queue.

Steps to insert an element into the queue.

Step 1 - Check whether queue is FULL. (rear == SIZE-1)

Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT FULL, then increment rear value by one (rear++) and

set queue[rear] = value.

deQueue() - Deleting a value from the Queue

 In a queue data structure, deQueue() is a function used to delete an element from the queue.

 In a queue, the element is always deleted from front position.

 The deQueue() function does not take any value as parameter.

Steps to delete an element from the queue.

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT EMPTY, then increment the front value by one (front ++). Then

display queue[front] as deleted element. Then check whether both front and rear are equal

(front == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Queue

Steps to display the elements of a queue.

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

Step 4 - Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until 'i'

value reaches to rear (i <= rear)

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106/106/106106127/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 96,97

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Linked list implementation of Queue Operations

Introduction :

 The implementation of queue data structure using array is very simple.

 Just define a one dimensional array of specific size and insert or delete the values into that array

by using FIFO (First In First Out) principle with the help of variables 'front' and 'rear. Initially both

'front' and 'rear' are set to -1.

 Whenever, insert a new value into the queue, increment 'rear' value by one and then insert at

that position.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Queue

 Pointers

 Front

 Rear

Detailed content of the Lecture:

Operations

Steps to implement queue using linked list.

Step 1 - Include all the header files which are used in the program. And declare all the user defined

functions.

Step 2 - Define a 'Node' structure with two members data and next.

Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.

Step 4 - Implement the main method by displaying Menu of list of operations and make suitable

function calls in the main method to perform user selected operation.

L-16 LECTURE HANDOUTS

II/III IT

enQueue(value) - Inserting an element into the Queue

Steps to insert a new node into the queue.

Step 1 - Create a newNode with given value and set 'newNode → next' to NULL.

Step 2 - Check whether queue is Empty (rear == NULL)

Step 3 - If it is Empty then, set front = newNode and rear = newNode.

Step 4 - If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

Steps to delete a node from the queue.

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and

terminate from the function

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

Steps to display the elements (nodes) of a queue.

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp'

reaches to 'rear' (temp → next != NULL).

Step 5 - Finally! Display 'temp → data ---> NULL'.

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106/106/106106127/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 99,100

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Circular Queue, Priority Queue, Array representation of Priority Queue

Introduction :

 A circular queue is a linear data structure in which the operations are performed based on FIFO

(First In First Out) principle and the last position is connected back to the first position to make

a circle

Prerequisite knowledge for Complete understanding and learning of Topic:

 linear data structure

 Queue

Detailed content of the Lecture:

Implementation of Circular Queue

To implement a circular queue data structure using an array, we first perform the following steps

before we implement actual operations.

Step 1 - Include all the header files which are used in the program and define a

 constant 'SIZE' with specific value.

Step 2 - Declare all user defined functions used in circular queue implementation.

Step 3 - Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

Step 4 - Define two integer variables 'front' and 'rear' and initialize both with '-1'.

 (int front = -1,rear = -1)

 Step 5 - Implement main method by displaying menu of operations list and make suitable

 function calls to perform operation selected by the user on circular queue.

L-17 LECTURE HANDOUTS

II/III IT

enQueue(value) - Inserting value into the Circular Queue

 In a circular queue, enQueue() is a function which is used to insert an element into the circular

queue. In a circular queue, the new element is always inserted at rear position.

 The enQueue() function takes one integer value as parameter and inserts that value into the

circular queue. We can use the following steps to insert an element into the circular queue..

Step 1 - Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front == rear+1))

Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and terminate

the function.

Step 3 - If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE, then

set rear = -1.

Step 4 - Increment rear value by one (rear++), set queue[rear] = value and check 'front == -1' if it

is TRUE, then set front = 0.

deQueue() - Deleting a value from the Circular Queue

 In a circular queue, deQueue() is a function used to delete an element from the circular queue.

 In a circular queue, the element is always deleted from front position.

 The deQueue() function doesn't take any value as a parameter. We can use the following steps

to delete an element from the circular queue.

Step 1 - Check whether queue is EMPTY. (front == -1 && rear == -1)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT EMPTY, then display queue[front] as deleted element and increment

the front value by one (front ++). Then check whether front == SIZE, if it is TRUE, then set front

= 0. Then check whether both front - 1 and rear are equal (front -1 == rear), if it TRUE, then set

both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Circular Queue

Steps to display the elements of a circular queue.

Step 1 - Check whether queue is EMPTY. (front == -1)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

Step 4 - Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and increment

'i' value by one (i++). Repeat the same until 'i <= rear' becomes FALSE.

Step 5 - If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value by one

(i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

Step 6 - Set i to 0.

Step 7 - Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the same until

'i <= rear' becomes FALSE.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=ImSRt7LxQnY

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 27-32

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : II [STACK AND QUEUE] Date of Lecture:

Topic of Lecture: Double Ended Queue, Applications of Queue

Introduction :

 Insertion is performed at the end of the queue and deletion is performed based on the FIFO principle.

 This queue implementation may not be suitable for all applications

Prerequisite knowledge for Complete understanding and learning of Topic:

 Queue implementation

Detailed content of the Lecture:

Double Ended Queue Datastructure

 Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are

performed at both the ends (front and rear). Insert at both front and rear positions and can delete

from both front and rear positions.

Double Ended Queue can be represented in TWO ways,

 Input Restricted Double Ended Queue

 Output Restricted Double Ended Queue

L-18 LECTURE HANDOUTS

II/III IT

Input Restricted Double Ended Queue

 In input restricted double-ended queue, the insertion operation is performed at only one end and

deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

 In output restricted double ended queue, the deletion operation is performed at only one end and

insertion operation is performed at both the ends.

APPLICATION OF QUEUE

 Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

 In real life scenario, Call Center phone systems uses Queues to hold people calling them in an order,

until a service representative is free.

Handling of interrupts in real-time systems. The interrupts are handled in the same order as they arrive i.e,

First come first served

There are two types of priority queues are as follows.

1. Max Priority Queue

2. Min Priority Queue

1. Max Priority Queue

 In a max priority queue, elements are inserted in the order in which they arrive the queue and the

maximum value is always removed first from the queue.

 For example, assume that we insert in the order 8, 3, 2 & 5 and they are removed in the order

8, 5, 3, 2.

 The following are the operations performed in a Max priority queue.

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMax() - Find maximum value in the queue.

4. remove() - Delete maximum value from the queue.

Max Priority Queue Representations

There are 6 representations of max priority queue.

 Using an Unordered Array (Dynamic Array)

 Using an Unordered Array (Dynamic Array) with the index of the maximum value

 Using an Array (Dynamic Array) in Decreasing Order

 Using an Array (Dynamic Array) in Increasing Order

 Using Linked List in Increasing Order

 Using Unordered Linked List with reference to node with the maximum value

 isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity

which means constant time complexity.

 insert() - New element is added at the end of the queue. This operation requires O(1) time

complexity which means constant time complexity.

 findMax() - To find the maximum element in the queue, we need to compare it with all the

elements in the queue. This operation requires O(n) time complexity.

 remove() - To remove an element from the max priority queue, first we need to find the

largest element using findMax() which requires O(n) time complexity, then that element is

deleted with constant time complexity O(1). The remove() operation requires O(n) + O(1) ≈

O(n) time complexity.

 Min Priority Queue Representations

 Min Priority Queue is similar to max priority queue except for the removal of maximum element

first.

 Remove minimum element first in the min-priority queue.

The following operations are performed in Min Priority Queue.

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMin() - Find minimum value in the queue.

4. remove() - Delete minimum value from the queue

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106/106/106106127/

https://nptel.ac.in/courses/106/106/106106127/

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,Page Nos: 33-35

 Course Teacher

 Verified by HOD

https://nptel.ac.in/courses/106/106/106106127/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III [TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Trees: Basic terminologies of trees

Introduction :

 Tree is a non-linear data structure which organizes data in a hierarchical structure and this is a

recursive definition.

 A tree is a connected graph without any circuits.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Non-linear data Structure

 Data

Detailed content of the Lecture:

 Tree is a hierarchical data structure which stores the information naturally in the form of hierarchy

style.

 Tree is one of the most powerful and advanced data structures.

 It is a non-linear data structure compared to arrays, linked lists, stack and queue.

 It represents the nodes connected by edges.

 The above figure represents structure of a tree. Tree has 2 subtrees.

 A is a parent of B and C.

 B is called a child of A and also parent of D, E, F.

 Tree is a collection of elements called Nodes, where each node can have arbitrary number of

children.

L-19 LECTURE HANDOUTS

II/III IT

Basic Terminologies of Trees

Field Description

Root Root is a special node in a tree. The entire tree is referenced through it. It does not

have a parent.

Parent Node Parent node is an immediate predecessor of a node.

Child Node All immediate successors of a node are its children.

Siblings Nodes with the same parent are called Siblings.

Path Path is a number of successive edges from source node to destination node.

Height of Node Height of a node represents the number of edges on the longest path between that

node and a leaf.

Height of Tree Height of tree represents the height of its root node.

Depth of Node Depth of a node represents the number of edges from the tree's root node to the

node.

Degree of Node Degree of a node represents a number of children of a node.

Edge Edge is a connection between one node to another. It is a line between two nodes

or a node and a leaf.

Node

 Node – user-defined data structure that that contains pointers to data and pointers to other nodes

 The code to write a tree node has a data part and references to its left and right child nodes.

struct node

 {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Root-The first node from where the tree originates is called as a root node.

 In any tree, there must be only one root node.

 We can never have multiple root nodes in a tree data structure.

Example

Here, node A is the only root node.

Parent-The node which has a branch from it to any other node is called as a parent node.

 In other words, the node which has one or more children is called as a parent node.

 In a tree, a parent node can have any number of child nodes.

Example

Here,

Node A is the parent of nodes B and C

Node B is the parent of nodes D, E and F

Child-The node which is a descendant of some node is called as a child node.

 All the nodes except root node are child nodes.

Example

Here,Nodes B and C are the children of node A

Siblings-Nodes which belong to the same parent are called as siblings.

 In other words, nodes with the same parent are sibling nodes.

Example

Here, Nodes B and C are siblings

Degree-

 Degree of a node is the total number of children of that node.

 Degree of a tree is the highest degree of a node among all the nodes in the tree.

Example

Here,

Degree of node A = 2

Degree of node B = 3

Degree of node C = 2

Degree of node D = 0

Leaf Node-The node which does not have any child is called as a leaf node.

 Leaf nodes are also called as external nodes or terminal nodes.

Example

Here, nodes D, I, J, F, K and H are leaf nodes.

Level-In a tree, each step from top to bottom is called as level of a tree.

 The level count starts with 0 and increments by 1 at each level or step.

Example

Height-Total number of edges that lies on the longest path from any leaf node to a particular node is called

as height of that node.

 Height of a tree is the height of root node.

 Height of all leaf nodes = 0

Example

Here,

Height of node A = 3

Height of node B = 2

Height of node C = 2

Depth- Total number of edges from root node to a particular node is called as depth of that node.

 Depth of a tree is the total number of edges from root node to a leaf node in the longest path.

 Depth of the root node = 0

 The terms “level” and “depth” are used interchangeably.

Example

Here,

Depth of node A = 0

Depth of node B = 1

Depth of node C = 1

Depth of node D = 2

Subtree-

In a tree, each child from a node forms a subtree recursively.

Every child node forms a subtree on its parent node.

Example

Video Content / Details of website for further learning (if any):

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/

https://www.tutorialride.com/data-structures/trees-in-data-structure.html

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012,
Page Nos: 105-107

 Course Teacher

 Verified by HOD

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
https://www.tutorialride.com/data-structures/trees-in-data-structure.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Binary tree –Representation of binary Tree

Introduction :

 Binary Tree is a special data structure used for data storage purposes.

 A binary tree has a special condition that each node can have a maximum of two children.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree

 Non linear structure

Detailed content of the Lecture:

 A binary tree has a root node. It may not have any child nodes (0 child nodes, NULL tree).

 A root node may have one or two child nodes.

 Each node forms a binary tree itself.

 The number of child nodes cannot be more than two.

 It has a unique path from the root to every other node Prefix Expression

1. Full Binary Tree

2. Complete Binary Tree

1. Full Binary Tree

 If each node of binary tree has either two children or no child at all, is said to be a Full Binary

Tree.

 Full binary tree is also called as Strictly Binary Tree.

 Every node in the tree has either 0 or 2 children.

 Full binary tree is used to represent mathematical expressions.

L-20
LECTURE HANDOUTS

II/III IT

2. Complete Binary Tree

 If all levels of tree are completely filled except the last level and the last level has all keys as left

as possible, is said to be a Complete Binary Tree.

 Complete binary tree is also called as Perfect Binary Tree.

In a complete binary tree, every internal node has exactly two children and all leaf nodes are at same

level.

For example, at Level 2, there must be 2
2
 = 4 nodes and at Level 3 there must be 2

3
 = 8 nodes.

Properties of Binary Trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

2. Maximum number of leaves = 2h

3. Maximum number of nodes = 2h + 1 - 1

4. If a binary tree contains m nodes at level l, it contains at most 2m nodes at level l + 1.

5. Since a binary tree can contain at most one node at level 0 (the root), it can contain at most 2l node at

level l.

6. The total number of edges in a full binary tree with n node is n - 1.

A binary tree data structure is represented using two methods. Those methods are as follows...

Array Representation

Linked List Representation

Consider the following binary tree...

1.Array Representation of Binary Tree

 In array representation of a binary tree, one-dimensional array (1-D Array) to represent a binary

tree.

 Consider the above example of a binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one dimensional array with a

maximum size of 2n + 1.

2.Linked List Representation of Binary Tree

 It uses a double linked list to represent a binary tree.

 In a double linked list, every node consists of three fields.

 First field for storing left child address, second for storing actual data and third for storing right

child address.

 In this linked list representation, a node has the following structure...

 The above example of the binary tree represented using Linked list representation is shown as

follows.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 105-107

 Course Teacher

 Verified by HOD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Binary Tree Traversal

Introduction :

 Traversal of a binary tree means to visit each node in the tree exactly once. The tree traversal

is used in all t it.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data structure

 Node

 Tree

 Subtree

Detailed content of the Lecture:

 Traversal is a process to visit all the nodes of a tree and may print their values too.

 Because, all nodes are connected via edges (links) we always start from the root (head) node.

 It cannot be randomly access a node in a tree.

There are three ways which we use to traverse a tree

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Traverse a tree to search or locate a given item or key in the tree or to print all the values it contains.

In-order Traversal
 In this traversal method, the left subtree is visited first, then the root and later the right sub-tree.

 It should always remember that every node may represent a subtree itself.

 If a binary tree is traversed in-order, the output will produce sorted key values in an ascending

order.

L-21
LECTURE HANDOUTS

II/III IT

 Start from A, and following in-order traversal, we move to its left subtree B.

 B is also traversed in-order.

 The process goes on until all the nodes are visited.

The output of inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal
In this traversal method, the root node is visited first, then the left subtree and finally the right subtree.

 Start from A, and following pre-order traversal, first visit A itself and then move to its left

subtree B.

 B is also traversed pre-order.

 The process goes on until all the nodes are visited.

 The output of pre-order traversal of this tree will be

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal
In this traversal method, the root node is visited last, hence the name. First traverse the left subtree,

then the right subtree and finally the root node.

 Start from A, and following Post-order traversal, first visit the left subtree B.

 B is also traversed post-order.

 The process goes on until all the nodes are visited.

The output of post-order traversal of this tree will be

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/data_structures_algorithms/tree_traversal.htm

Important Books/Journals for further learning including the page nos.:

E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008-Page Nos: 19-22

 Course Teacher

 Verified by HOD

https://www.tutorialspoint.com/data_structures_algorithms/tree_traversal.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Operations on Binary tree, Tree representation of an arithmetic expression

Introduction :

 Traversal of a binary tree means to visit each node in the tree exactly once. The tree

traversal is used in all t it.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data structure

 Node

 Tree

 Subtree

Detailed content of the Lecture:

Operations on a Binary Search Tree
The following operations are performed on a binary search tree.

 Search

 Insertion

 Deletion

Search Operation in BST
Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function

Step 4 - If both are not matched, then check whether search element is smaller or larger than

 that node value.

Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6- If search element is larger, then continue the search process in right subtree.

Step 7 - Repeat the same until we find the exact element or until the search element is

 compared with the leaf node

L-22 LECTURE HANDOUTS

II/III IT

Insertion Operation in BST

 In a binary search tree, the insertion operation is performed with O(log n) time complexity.

 In binary search tree, new node is always inserted as a leaf node.

The insertion operation is performed as follows.

Step 1 - Create a newNode with given value and set its left and right to NULL.

Step 2 - Check whether tree is Empty.

Step 3 - If the tree is Empty, then set root to newNode.

Step 4 - If the tree is Not Empty, then check whether the value of newNode

is smaller or larger than the node (here it is root node).

Step 5 - If newNode is smaller than or equal to the node then move to its left child.

Step 6- Repeat the above steps until we reach to the leaf node (i.e., reaches to NULL).

Step 7 - After reaching the leaf node, insert the newNode as left child if the newNode

is smaller or equal to that leaf node or else insert it as right child.

Deletion Operation in BST

 In a binary search tree, the deletion operation is performed with O(log n) time complexity.

Deleting a node from Binary search tree includes following three cases.

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

The following steps to delete a leaf node from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - Delete the node using free function (If it is a leaf) and terminate the function.

Case 2: Deleting a node with one child

The following steps to delete a node with one child from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has only one child then create a link between its parent node and child node.

Step 3 - Delete the node using free function and terminate the function.

Construct a Binary Search Tree by inserting the following sequence of numbers...

10,12,5,4,20,8,7,15 and 13

Above elements are inserted into a Binary Search Tree as follows. Tree representation of an arithmetic

expression

 An expression is a string of symbols. Arithmetic expressions are made up of variable names,

binary operators and brackets

 Example Arithmetic Expression: A + (B * (C / D))

 Tree for the above expression:

 Leaves = operands (constants/variables)

 Non-leaf nodes = operators

 + A * B / C D

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/binary-search-tree.html

Important Books/Journals for further learning including the page nos.:

E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008-page nos:23-25

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/binary-search-tree.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Binary Search Tree – Creation, Searching for an item

Introduction :

 The nodes of a binary tree can be numbered in a natural way, level by level, left to right.

 The nodes of a complete binary tree can be numbered so that the root is assigned the number 1,

a left child is assigned twice the number assigned its parent, and a right child is assigned one

more than twice the number assigned its parent

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Path

 Root

Detailed content of the Lecture:

Binary Search Tree is a special kind of binary tree in which nodes are arranged in a specific order.
In a binary search tree (BST), each node contains-

Only smaller values in its left sub tree

Only larger values in its right sub tree

Binary Search Tree Construction-
Construct a Binary Search Tree (BST) for the following sequence of numbers-

50, 70, 60, 20, 90, 10, 40

Insert 50

Insert 70

As 70 > 50, so insert 70 to the right of 50.

Insert 60

As 60 > 50, so insert 60 to the right of 50. As 60 < 70, so insert 60 to the left of 70.

L-23 LECTURE HANDOUTS

II/III IT

Insert 20

As 20 < 50, so insert 20 to the left of 50.

Insert 90

As 90 > 50, so insert 90 to the right of 50. As 90 > 70, so insert 90 to the right of 70.

Insert 10

As 10 < 50, so insert 10 to the left of 50. As 10 < 20, so insert 10 to the left of 20.

Insert 40

As 40 < 50, so insert 40 to the left of 50. As 40 > 20, so insert 40 to the right of 20.

Video Content / Details of website for further learning (if any):

https://www.gatevidyalay.com/binary-search-trees-data-structures/

https://www.youtube.com/watch?v=Qat40osl21g

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 116,123

Course Teacher

Verified by HOD

https://www.gatevidyalay.com/binary-search-trees-data-structures/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Minimum, Maximum or any value

Introduction :

 The left sub-tree of a node contains only nodes with keys less than the node’s key.
 The right sub-tree of a node contains only nodes with keys greater than the node’s key.

 The left and right sub-tree each must also be a binary search tree.

There must be no duplicate nodes.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Searching

 Minimum VALUES

 Maximum Values

 Applications of Binary Search tree

Detailed content of the Lecture:

 A binary search tree is a special binary tree, which is either empty or it should satisfy the

following characteristics: Every node has a value and no two nodes should have the same

value i.e) the values in the binary search tree are distinct ·

 The values in any left sub-tree is less than the value of its parent node ·

 The values in any right sub-tree is greater than the value of its parent node ·

 The left and right sub-trees of each node are again binary

 The left sub-tree of a node contains only nodes with keys less than the node’s key.

 The right sub-tree of a node contains only nodes with keys greater than the node’s key.

The above properties of Binary Search Tree provide an ordering among keys so that the

operations like search, minimum and maximum can be done fast. If there is no ordering, then

we may have to compare every key to search a given key.

the values in the binary search tree are distinct

· The values in any left sub-tree is less than the value of its parent node

· The values in any right sub-tree is greater than the value of its parent node

· The left and right sub-trees of each node are again binary search trees

L-24

LECTURE HANDOUTS

II/III IT

 Searching a key

To search a given key in Binary Search Tree, we first compare it with root, if the key is present

at root, we return root. If key is greater than root’s key, we recur for right sub-tree of root node.

Otherwise we recur for left sub-tree.

A utility function to search a given key in

BST def search(root,key):

Base Cases: root is null or key is present at root

if root is None or root.val ==

key: return root

Key is greater than root's

key if root.val < key:

return search(root.right,key)

Key is smaller than root's

key return

search(root.left,key)

APPLICATIONS OF BINARY SEARC TREE

· Calls to large companies

· Access to limited resources in Universities

· Accessing files from file server

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/binary-search-tree.html

http://www.btechsmartclass.com/binary-search-tree.html

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,Page Nos: 116-123

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/binary-search-tree.html
http://www.btechsmartclass.com/binary-search-tree.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Applications of Binary search tree, MaxHeap-Definition

Introduction :

 The left sub-tree of a node contains only nodes with keys less than the node’s key.
 The right sub-tree of a node contains only nodes with keys greater than the node’s key.

 The left and right sub-tree each must also be a binary search tree.

There must be no duplicate nodes.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Searching

 Minimum VALUES

 Maximum Values

 Applications of Binary Search tree

Detailed content of the Lecture:

 A binary search tree is a special binary tree, which is either empty or it should satisfy the

following characteristics: Every node has a value and no two nodes should have the same

value i.e) the values in the binary search tree are distinct ·

 The values in any left sub-tree is less than the value of its parent node ·

 The values in any right sub-tree is greater than the value of its parent node ·

 The left and right sub-trees of each node are again binary

 The left sub-tree of a node contains only nodes with keys less than the node’s key.

 The right sub-tree of a node contains only nodes with keys greater than the node’s key.

The above properties of Binary Search Tree provide an ordering among keys so that the

operations like search, minimum and maximum can be done fast. If there is no ordering, then we

may have to compare every key to search a given key.the values in the binary search tree are

distinct

· The values in any left sub-tree is less than the value of its parent node

· The values in any right sub-tree is greater than the value of its parent node

· The left and right sub-trees of each node are again binary search trees

L-25 LECTURE HANDOUTS

II/III IT

Searching a key

To search a given key in Binary Search Tree, we first compare it with root, if the key is present

at root, we return root. If key is greater than root’s key, we recur for right sub-tree of root node.

Otherwise we recur for left sub-tree.

A utility function to search a given key in

BST def search(root,key):

Base Cases: root is null or key is present at root

if root is None or root.val ==

key: return root

Key is greater than root's

key if root.val < key:

return search(root.right,key)

Key is smaller than root's

key return

search(root.left,key)

APPLICATIONS OF BINARY SEARC TREE

· Calls to large companies

· Access to limited resources in Universities

· Accessing files from file server

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/binary-search-tree.html

http://www.btechsmartclass.com/binary-search-tree.html

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 116-123

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/binary-search-tree.html
http://www.btechsmartclass.com/binary-search-tree.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Insertion into a Max Heap

Introduction :

 Heap data structure is a specialized binary tree-based data structure.

 Heap is a binary tree with special characteristics. In a heap data structure, nodes are arranged

based on their values.

 A heap data structure sometimes also called as Binary Heap.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Heap

 Node

 Binary Heap

Detailed content of the Lecture:

Max Heap

Max heap data structure is a specialized full binary tree data structure. In a max heap nodes are

arranged based on node value. Max heap is defined as follows

Max heap is a specialized full binary tree in which every parent node contains greater or equal value

than its child nodes.

Insertion Operation in Max Heap

Insertion Operation in max heap is performed as follows...

Step 1 - Insert the newNode as last leaf from left to right.

Step 2 - Compare newNode value with its Parent node.

Step 3 - If newNode value is greater than its parent, then swap both of them.

Step 4 - Repeat step 2 and step 3 until newNode value is less than its parent node (or) newNode

reaches to root.Consider the above max heap. Insert a new node with value 85.

Step 1 - Insert the newNode with value 85 as last leaf from left to right. That means newNode is added

as a right child of node with value 75. After adding max heap is as follows...

L-26 LECTURE HANDOUTS

II/III IT

Step 2 - Compare newNode value (85) with its Parent node value (75). That means 85 > 75

Step 3 - Here newNode value (85) is greater than its parent value (75), then swap both of them.

After swapping, max heap is as follows.

Deletion Operation in Max Heap

In a max heap, deleting the last node is very simple as it does not disturb max heap properties.

Deleting root node from a max heap is little difficult as it disturbs the max heap properties. We use the

following steps to delete the root node from a max heap...

Step 1 - Swap the root node with last node in max heap

Step 2 - Delete last node.

Step 3 - Now, compare root value with its left child value.

Step 4 - If root value is smaller than its left child, then compare left child with its right sibling. Else

 goto Step 6

Step 5 - If left child value is larger than its right sibling, then swap root with left

 child otherwise swap root with its right child.

Step 6 - If root value is larger than its left child, then compare root value with its right child value.

Step 7 - If root value is smaller than its right child, then swap root with right child otherwise stop

 the process.

Step 8 - Repeat the same until root node fixes at its exact position.

Example

Consider the above max heap. Delete root node (90) from the max heap.

Step 1 - Swap the root node (90) with last node 75 in max heap. After swapping max heap
is as follows

Step 2 - Delete last node. Here the last node is 90. After deleting node with value 90 from
heap, max heap is as follows
Step 3 - Compare root node (75) with its left child (89).

Here, root value (75) is smaller than its left child value (89). So, compare left child (89) with
its right sibling (70).

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/max-heap.html

http://www.btechsmartclass.com/data_structures/binary-heap.html

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 193-207

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/max-heap.html
http://www.btechsmartclass.com/data_structures/binary-heap.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : III[TREE AND BINARY SEARCH TREE] Date of Lecture:

Topic of Lecture: Deletion from a Max Heap

Introduction :

 Heap data structure is a specialized binary tree-based data structure.

 Heap is a binary tree with special characteristics. In a heap data structure, nodes are arranged

based on their values.

 A heap data structure sometimes also called as Binary Heap.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Heap

 Node

 Binary Heap

Detailed content of the Lecture:

Max Heap

Max heap data structure is a specialized full binary tree data structure. In a max heap nodes are

arranged based on node value.Max heap is defined as follows

Max heap is a specialized full binary tree in which every parent node contains greater or equal value

than its child nodes.

Insertion Operation in Max Heap

Insertion Operation in max heap is performed as follows...

Step 1 - Insert the newNode as last leaf from left to right.

Step 2 - Compare newNode value with its Parent node.

Step 3 - If newNode value is greater than its parent, then swap both of them.

Step 4 - Repeat step 2 and step 3 until newNode value is less than its parent node (or) newNode

reaches to root.

L-27 LECTURE HANDOUTS

II/III IT

Consider the above max heap. Insert a new node with value 85.

Step 1 - Insert the newNode with value 85 as last leaf from left to right. That means newNode is added

as a right child of node with value 75. After adding max heap is as follows

Step 2 - Compare newNode value (85) with its Parent node value (75). That means 85 > 75

Step 3 - Here newNode value (85) is greater than its parent value (75), then swap both of them.

After swapping, max heap is as follows.

Deletion Operation in Max Heap

In a max heap, deleting the last node is very simple as it does not disturb max heap properties.

Deleting root node from a max heap is little difficult as it disturbs the max heap properties. We use the

following steps to delete the root node from a max heap...

Step 1 - Swap the root node with last node in max heap

Step 2 - Delete last node.

Step 3 - Now, compare root value with its left child value.

Step 4 - If root value is smaller than its left child, then compare left child with its right sibling. Else

goto Step 6

Step 5 - If left child value is larger than its right sibling, then swap root with left

child otherwise swap root with its right child.

Step 6 - If root value is larger than its left child, then compare root value with its right child value.

Step 7 - If root value is smaller than its right child, then swap root with right child otherwise stop

the process.

Step 8 - Repeat the same until root node fixes at its exact position.

Example

Consider the above max heap. Delete root node (90) from the max heap.

 Step 1 - Swap the root node (90) with last node 75 in max heap. After swapping max heap is

as follows...

Step 2 - Delete last node. Here the last node is 90. After deleting node with value 90 from heap, max

heap is as follows...

Step 3 - Compare root node (75) with its left child (89).

Here, root value (75) is smaller than its left child value (89). So, compare left child (89) with its right

sibling (70).

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/max-heap.html

http://www.btechsmartclass.com/data_structures/binary-heap.html

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 193-207

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/max-heap.html
http://www.btechsmartclass.com/data_structures/binary-heap.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Definition – Graph terminologies

Introduction :

 Graph is a non-linear data structure. It contains a set of points known as nodes (or vertices) and

a set of links known as edges (or Arcs). Here edges are used to connect the vertices.

Prerequisite knowledge for Complete understanding and learning of Topic:

 non-linear data structure

 nodes

Detailed content of the Lecture:

 Graph is a collection of vertices and arcs in which vertices are connected with arcs

 Graph is a collection of nodes and edges in which nodes are connected with edges

 A graph G is represented as G = (V , E), where V is set of vertices and E is set of edges.

Example

The following is a graph with 5 vertices and 6 edges.

This graph G can be defined as G = (V , E)

Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}.

Graph Terminology
Vertex

 Individual data element of a graph is called as Vertex. Vertex is also known as node.

 In above example graph, A, B, C, D & E are known as vertices.

Edge

 An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (startingVertex, endingVertex).

 For example, in above graph the link between vertices A and B is represented as (A,B).

 In above example graph, there are 7 edges (i.e., (A,B), (A,C), (A,D), (B,D), (B,E), (C,D),

(D,E)).

Edges are three types.

Undirected Edge - An undirected egde is a bidirectional edge. If there is undirected edge between

vertices A and B then edge (A , B) is equal to edge (B , A).

Directed Edge - A directed egde is a unidirectional edge. If there is directed edge between vertices A

and B then edge (A , B) is not equal to edge (B , A).

Weighted Edge - A weighted egde is a edge with value (cost) on it.

L-28 LECTURE HANDOUTS

II/III IT

Undirected graph

Undirected: An undirected graph is a graph in which all the edges are bi-directional i.e. the edges do

not point in any specific direction.

Directed graph

Directed: A directed graph is a graph in which all the edges are uni-directional i.e. the edges point in a

single direction.

Weighted Graph

A graph (or digraph) is termed as weighted graph if all edges in it are labeled with some weights. Eg:

Video Content / Details of website for further learning (if any):
http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html
https://nptel.ac.in/courses/106106133/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 299-300

Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Graph Terminologies

Introduction :

 Graph is a non-linear data structure. It contains a set of points known as nodes (or vertices) and

a set of links known as edges (or Arcs). Here edges are used to connect the vertices.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Non-Linear Data Structure

 Nodes

 Edges

 Vertices

Detailed content of the Lecture:

Adjacent Vertices

Two node or vertices are adjacent if they are connected to each other through an edge. In the following

example, B is adjacent to A, C is adjacent to B, and so on.

Self-loop

Edge (undirected or directed) is a self-loop if its two endpoints coincide with each other.

Parallel edges or Multiple edges

If there are two undirected edges with same end vertices and two directed edges with same origin and

destination, such edges are called parallel edges or multiple edges.

L-29 LECTURE HANDOUTS

II/III IT

Path
 A path is a sequence of alternate vertices and edges that starts at a vertex and ends at other vertex

such that each edge is incident to its predecessor and successor vertex.

Cycle

Cycle is a path that starts and end at the same vertex.

Degree

Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that vertex.

Outdegree

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Connected Graph

Two vertices vi, vj in a graph G is said to be connected only if there is a path in G between vi and vj.

Complete Graph

 An n vertex undirected graph with exactly n(n-1)/2 edges is said to be complete graph. The graph G is

said to be complete graph .

Video Content / Details of website for further learning (if any):
http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html
https://nptel.ac.in/courses/106106133/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 299-300

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/introduction-to-graphs.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Representation of Graph

Introduction :

 To represent a graph, we just need the set of vertices, and for each vertex the neighbors of the

vertex (vertices which is directly connected to it by an edge).

 If it is a weighted graph, then the weight will be associated with each edge.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Graph

 Edges

 Vertices

Detailed content of the Lecture:

Adjacency Matrix

 Adjacency matrix is a sequential representation.

 It is used to represent which nodes are adjacent to each other. i.e. is there any edge connecting

nodes to a graph.

 In this representation, we have to construct a nXn matrix A.

 If there is any edge from a vertex i to vertex j, then the corresponding element of A, a
i
,
j
 = 1,

otherwise a
i
,
j
= 0.

 If there is any weighted graph then instead of 1s and 0s, it can store the weight of the edge.

Example
Consider the following undirected graph representation:

Undirected graph representation

L-30

LECTURE HANDOUTS

II/III IT

Directed graph representation

See the directed graph representation:

In the above examples, 1 represents an edge from row vertex to column vertex, and 0 represents no

edge from row vertex to column vertex.

Undirected weighted graph representation

Pros: Representation is easier to implement and follow.

Cons: It takes a lot of space and time to visit all the neighbors of a vertex, we have to traverse all the

vertices in the graph, which takes quite some time.
Video Content / Details of Itbsite for further learning (if any):

http://www.btechsmartclass.com/data_structures/graph-representations.html
https://nptel.ac.in/courses/106/106/106106133/
Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 300-301

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/graph-representations.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Representation of Graph Linked representation

Introduction :

 To represent a graph, we just need the set of vertices, and for each vertex the neighbors of the

vertex (vertices which is directly connected to it by an edge).

 If it is a weighted graph, then the weight will be associated with each edge.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Graph

 Edges

 Vertices

Detailed content of the Lecture:

Adjacency List
Adjacency list is a linked representation.

 In this representation, for each vertex in the graph, we maintain the list of its neighbors. It means,

every vertex of the graph contains list of its adjacent vertices.

 An array of vertices which is indexed by the vertex number and for each vertex v, the

corresponding array element points to a singly linked list of neighbors of v.

Example

Let's see the following directed graph representation implemented using linked list:

Adjacency list is a Array representation

 An array of lists is used. Size of the array is equal to the number of vertices.

 Let the array be array[]. An entry array[i] represents the list of vertices adjacent to the ith

vertex.

 This representation can also be used to represent a weighted graph.

 The weights of edges can be represented as lists of pairs.

L-31 LECTURE HANDOUTS

II/III IT

 This representation can also be implemented using an array as follows.

struct node

{

 int vertex;

 struct node* next;

};

struct Graph

{

 int numVertices;

 struct node** adjLists;

};
 Pros:

 Adjacency list saves lot of space.

 We can easily insert or delete as we use linked list.

 Such kind of representation is easy to follow and clearly shows the adjacent nodes of node.

Cons:

 The adjacency list allows testing whether two vertices are adjacent to each other but it is slower

to support this operation.
Video Content / Details of Itbsite for further learning (if any):

http://www.btechsmartclass.com/data_structures/graph-representations.html
https://nptel.ac.in/courses/106/106/106106133/
Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 300-301

Course Teacher

Verified by HOD

http://www.btechsmartclass.com/data_structures/graph-representations.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Comparison of representations

Introduction :

 To represent a graph, we just need the set of vertices, and for each vertex the neighbors of the

vertex (vertices which is directly connected to it by an edge).

 If it is a weighted graph, then the weight will be associated with each edge.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Graph

 Linked list Representation

 Array Representation

Detailed content of the Lecture:

Adjacency list

 Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices.This

data structure allows the storage of additional data on the vertices.

 Additional data can be stored if edges are also stored as objects, in which case each vertex stores

its incident edges and each edge stores its incident vertices.

Adjacency matrix

 A two-dimensional matrix, in which the rows represent source vertices and columns represent

destination vertices. Data on edges and vertices must be stored externally.

 Only the cost for one edge can be stored between each pair of vertices.

Incidence matrix

 A two-dimensional Boolean matrix, in which the rows represent the vertices and columns

represent the edges. The entries indicate whether the vertex at a row is incident to the edge at a

column.

Directed graph

 Digraph:
A graph whose edges are directed (i.e have a direction)

Edge drawn as arrow

Edge can only be traversed in direction of arrow

Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}

L-32 LECTURE HANDOUTS

II/III IT

Undirected Graph

A graph where there is no implied direction on edge between nodes

 In diagrams, edges have no direction (i.e they are not arrows) Can traverse edges in either

directions

 Adjacency matrix representation Graphs can be classified by whether or not their edges have

weights

 Edges simply show connections Adjacency Matrix: 2D array containing weights on edges

 Row for each vertex

 Column for each vertex

 Entries contain weight of edge from row vertex to column vertex

 Entries contain ∞ (ie Integer'last) if no edge from row vertex to column vertex

 Entries contain 0 on diagonal (if self edges not allowed)

undirected graph

Applications of Graphs

 Social network graphs: to tweet or not to tweet

 Transportation networks

 Utility graphs

 Document link graphs

 Protein-protein interactions graphs

 Network packet traffic graphs

 Scene graphs

 Finite element meshes.

 Neural networks

 Robot planning
Video Content / Details of Itbsite for further learning (if any):

http://www.btechsmartclass.com/data_structures/graph-representations.html
https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 300-301

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/graph-representations.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Breadth First Search

Introduction :

 Graph traversal is a technique used for a searching vertex in a graph.

 The graph traversal is also used to decide the order of vertices is visited in the search process.

 A graph traversal finds the edges to be used in the search process without creating loops.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Queue

 Vertex
 Edges

 Graph traversal

Detailed content of the Lecture:

BFS (Breadth First Search)

 BFS traversal of a graph produces a spanning tree as final result.

 Spanning Tree is a graph without loops.

 BFS use Queue data structure with maximum size of total number of vertices in the graph to

implement BFS traversal.

Steps to implement BFS traversal.

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the

Queue.

Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue and

insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue

then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing unused

edges from the graph

L-33 LECTURE HANDOUTS

II/III IT

EXAMPLE

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/graph-traversal-bfs.html

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos:335-336

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/graph-traversal-bfs.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Depth First Search

Introduction :

 Graph traversal is a technique used for a searching vertex in a graph.

 The graph traversal is also used to decide the order of vertices is visited in the search process.

 A graph traversal finds the edges to be used in the search process without creating loops.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Stack
 Vertex
 Edges
 Graph traversal

Detailed content of the Lecture:
DFS (Depth First Search)

 DFS traversal of a graph produces a spanning tree as final result.

 Spanning Tree is a graph without loops.

 DFS use Stack data structure with maximum size of total number of vertices in the graph

to implement DFS traversal.
Steps to implement DFS traversal.

step 1 - Define a Stack of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the

Stack.

Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of

stack and push it on to the stack.

Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the

top of the stack.

Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from

the stack.

Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused

edges from the graph

Example

L-34 LECTURE HANDOUTS

II/III IT

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/graph-traversal-dfs.html

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 333-334

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/graph-traversal-dfs.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Spanning Trees, Minimal spanning tree

Introduction :

 A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges.

 Hence, a spanning tree does not have cycles and it cannot be disconnected.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 vertices

 Graphs

 Nodes

 cycles

Detailed content of the Lecture:

 Given a graph G=(V,E), a subgraph of G that is connects all of the vertices and is a tree is

called a spanning tree .

 For example, suppose we start with this graph: We can remove edges until we are left with

a tree: the result is a spanning tree.

 Clearly, a spanning tree will have |V|-1 edges, like any other tree.

 three spanning trees off one complete graph.

A complete undirected graph can have maximum n
n-2

 number of spanning trees, where n is the number

of nodes. In the above addressed example, n is 3, hence 3
3−2

 = 3 spanning trees are possible.

General Properties of Spanning Tree

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning

L35 LECTURE HANDOUTS

II/III IT

tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree

is maximally acyclic.

Mathematical Properties of Spanning Tree

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning

tree.

 A complete graph can have maximum n
n-2

 number of spanning trees.

 Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected

graphs do not have spanning tree.

Application of Spanning Tree

 Spanning tree is basically used to find a minimum path to connect all nodes in a graph.

 Common application of spanning trees are −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=ImSRt7LxQnY

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 306-320

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : IV [GRAPHS] Date of Lecture:

Topic of Lecture: Minimal spanning tree & Hamiltonian circuit

Introduction :

 Connected (there exists a path between every pair of vertices)

 Undirected (the edges do no have any directions associated with them such that (a,b) and (b,a)

are equivalent)

 Weighted (each edge has a weight or cost assigned to it)

 A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that there is an

edge (in the graph) from the last vertex to the first vertex of the Hamiltonian Path. ... A 2D

array graph[V][V] where V is the number of vertices in graph and graph[V][V] is adjacency

matrix representation of the graph.

Prerequisite knowledge for Complete understanding and learning of Topic:

 spanning tree

 cycle

 acyclic

 Hamiltonian cycle

 Hamiltonian circuit

 Hamiltonian Path

Detailed content of the Lecture:

The network shown in the second figure basically represents a graph G = (V, E) with a set of

vertices V = {a, b, c, d, e, f} and a set of edges E = { (a,b), (b,c), (c,d), (d,e), (e,f), (f,a), (b,f), (c,f) }.

The graph is:

 Connected (there exists a path between every pair of vertices)

 Undirected (the edges do no have any directions associated with them such that (a,b) and (b,a)

are equivalent)

 Weighted (each edge has a weight or cost assigned to it)

A spanning tree G' = (V, E') for the given graph G will include:

 All the vertices (V) of G

 All the vertices should be connected by minimum number of edges (E') such that E' ⊂ E

 G' can have maximum n-1 edges, where n is equal to the total number of edges in G

 G' should not have any cycles. This is one of the basic differences between a tree and graph

that a Figure 2

Also, there can be multiple spanning trees possible for any given graph. For eg: In addition to the

L36 LECTURE HANDOUTS

II/III IT

spanning tree in the above diagram, the graph can also have another spanning tree as shown below:

By convention, the total number of spanning trees for a given graph can be defined as:
n
Cm = n!/(m!*(n-m)!), where,

Hence, the total number of spanning trees(S) for the given graph(second diagram from top) can be

computed as follows:

 n = 8, for the given graph in Fig. 2

 m = 5, since its corresponding spanning tree can have only 5 edges. Adding a 6th edge can

result in the formation of cycles which is not allowed.

 So, S =
n
Cm =

8
C5 = 8!/ (5! * 3!) = 56, which means that 56 different variations of spanning

trees can be created for the given graph.

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the

subset of the edges of that graph which form a tree that includes every vertex has the minimum sum of

weights among all the trees that can be formed from the graph

How Kruskal's algorithm works

It falls under a class of algorithms called greedy algorithms which find the local optimum in the hopes

of finding a global optimum.

Kruskal's

Kruskal Algorithm Pseudocode

Any minimum spanning tree algorithm revolves around checking if adding an edge creates a

loop or not.

KRUSKAL(G):

A = ∅

For each vertex v ∈ G.V:

 MAKE-SET(v)

For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v):

 if FIND-SET(u) ≠ FIND-SET(v):

 A = A ∪ {(u, v)}

 UNION(u, v)

return A

A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that there is an edge (in the

graph) from the last vertex to the first vertex of the Hamiltonian Path. ... A 2D array graph[V][V]

where V is the number of vertices in graph and graph[V][V] is adjacency matrix representation of the

graph.

Given a graph G = (V, E) we have to find the Hamiltonian Circuit using Backtracking approach. We

start our search from any arbitrary vertex say 'a.'

This vertex 'a' becomes the root of our implicit tree. The first element of our partial solution is the first

intermediate vertex of the Hamiltonian Cycle that is to be constructed.

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree#minimum-spanning
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm

The next adjacent vertex is selected by alphabetical order. If at any stage any arbitrary vertex makes a

cycle with any vertex other than vertex 'a' then we say that dead end is reached.

 In this case, we backtrack one step, and again the search begins by selecting another vertex and

backtrack the element from the partial; solution must be removed.

The search using backtracking is successful if a Hamiltonian Cycle is obtained.

In an undirected graph, the Hamiltonian path is a path, that visits each vertex exactly once, and the

Hamiltonian cycle or circuit is a Hamiltonian path, that there is an edge from the last vertex to the first

vertex.Algorithm

isValid(v, k)
Input: Vertex v and position k.
Output: Checks whether placing v in the position k is valid or not.
Begin

 if there is no edge between node(k-1) to v, then

 return false

 if v is already taken, then

 return false

 return true; //otherwise it is valid

End

cycleFound(node k)
Input: node of the graph.
Output: True when there is a Hamiltonian Cycle, otherwise false.
Begin

 if all nodes are included, then

 if there is an edge between nodes k and 0, then

 return true

 else

 return false;

 for all vertex v except starting point, do

 if isValid(v, k), then //when v is a valid edge

 add v into the path

 if cycleFound(k+1) is true, then

 return true

 otherwise remove v from the path

 done

 return false

End
Source Code (C++)

#include<iostream>

#define NODE 5

using namespace std;

int graph[NODE][NODE] = {

 {0, 1, 0, 1, 0},

 {1, 0, 1, 1, 1},

 {0, 1, 0, 0, 1},

 {1, 1, 0, 0, 1},

 {0, 1, 1, 1, 0},

};

int path[NODE];

void displayCycle() {

 cout<<"Cycle: ";

 for (int i = 0; i < NODE; i++)

 cout << path[i] << " ";

 cout << path[0] << endl; //print the first vertex again

}

Video Content / Details of website for further learning (if any):

https://nptel.ac.in/courses/106/106/106106127/

Important Books/Journals for further learning including the page nos.:

R.Kruse,C.L.Tondo and B.Leung,Data structures and Program Design in C, 2
nd

 Edition , Prentice-Hall,

2006,page nos: 33-35,332

 Course Teacher

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture:Hashing: Introduction, Hash table, Hash function, Collision, Collision resolution

Introduction

 Hashing is also known as Hashing Algorithm or Message Digest Function..

 Function which helps us in generating such kind of key-value mapping is known as Hash

Function.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Array

 Index value

 key-value mapping

Detailed content of the Lecture:

 Hashing is the process of mapping large amount of data item to smaller table with the help

of hashing function.

 It is a technique to convert a range of key values into a range of indexes of an array.

 It is used to facilitate the next level searching method when compared with the linear or binary

search.

 Hashing allows to update and retrieve any data entry in a constant time O(1).

 Constant time O(1) means the operation does not depend on the size of the data.

 Hashing is used with a database to enable items to be retrieved more quickly.

 It is used in the encryption and decryption of digital signatures.

Hash Function

 A fixed process converts a key to a hash key is known as a Hash Function.

 This function takes a key and maps it to a value of a certain length which is called a Hash

value or Hash.

 Hash value represents the original string of characters, but it is normally smaller than the

original.

 It transfers the digital signature and then both hash value and signature are sent to the receiver.

Receiver uses the same hash function to generate the hash value and then compares it to that

received with the message.

 If the hash values are same, the message is transmitted without errors.

Hash Table

 Hash table or hash map is a data structure used to store key-value pairs.

 It is a collection of items stored to make it easy to find them later.

L37 LECTURE HANDOUTS

II/III IT

 It uses a hash function to compute an index into an array of buckets or slots from which the desired

value can be found.

 It is an array of list where each list is known as bucket.

 It contains value based on the key.

 Hash table is used to implement the map interface and extends Dictionary class.

 Hash table is synchronized and contains only unique elements.

 Suppose we have integer items {26, 70, 18, 31, 54, 93}. One common method of determining a hash

key is the division method of hashing and the formula is :

Hash Key = Key Value % Number of Slots in the Table

 Division method or reminder method takes an item and divides it by the table size and returns the

remainder as its hash value.

Data Item Value % No. of Slots Hash Value

26 26 % 10 = 6 6

70 70 % 10 = 0 0

18 18 % 10 = 8 8

31 31 % 10 = 1 1

54 54 % 10 = 4 4

93 93 % 10 = 3 3

Collision Handling:

 Since a hash function gets us a small number for a big key, there is possibility that two keys

result in same value.

 The situation where a newly inserted key maps to an already occupied slot in hash table is called

collision and must be handled using some collision handling technique.

 Following are the ways to handle collisions:

 Chaining:The idea is to make each cell of hash table point to a linked list of records that

have same hash function value.

 Open Addressing: In open addressing, all elements are stored in the hash table itself.

Video Content / Details of website for further learning (if any):
https://www.tutorialride.com/data-structures/hashing-in-data-structure.html

https://nptel.ac.in/courses/106105085/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 165-167

 Course Teacher

Verified by HOD

https://www.tutorialride.com/data-structures/hashing-in-data-structure.html
https://nptel.ac.in/courses/106105085/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Separate chaining, open addressing; Rehashing – Extendible hashing

Introduction :

 It is a situation in which the hash function returns the same hash key for more than one record,

it is called as collision.

 Sometimes when we are going to resolve the collision it may lead to a overflow condition and

this overflow and collision condition makes the poor hash function.

 It is a dynamic hashing method wherein directories, and buckets are used to hash data.

 It is an aggressively flexible method in which the hash function also experiences dynamic

changes.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Hashing

 Hash table

 Collision

Detailed content of the Lecture:

 Collision resolution technique

 If there is a problem of collision occurs then it can be handled by apply some technique. These

techniques are called as collision resolution techniques.

 There are generally four techniques which are described below.

Chaining

 It is a method in which additional field with data i.e. chain is introduced.

 A chain is maintained at the home bucket.

 In this when a collision occurs then a linked list is maintained for colliding data.

Open Addressing

 Like separate chaining, open addressing is a method for handling collisions.

 In Open Addressing, all elements are stored in the hash table itself.

 So at any point, size of the table must be greater than or equal to the total number of keys (Note

that we can increase table size by copying old data if needed).

 Insert(k): Keep probing until an empty slot is found.

L38 LECTURE HANDOUTS

II/III IT

 Once an empty slot is found, insert k.

 Search(k): Keep probing until slot‟s key doesn‟t become equal to k or an empty slot is reached.

 Delete(k): Delete operation is interesting. If we simply delete a key, then search may fail. So

slots of deleted keys are marked specially as “deleted”.

Insert can insert an item in a deleted slot, but the search doesn‟t stop at a deleted slot.

Linear probing

 It is very easy and simple method to resolve or to handle the collision.

 In this collision can be solved by placing the second record linearly down, whenever the empty

place is found.

 In this method there is a problem of clustering which means at some place block of a data is

formed in a hash table.

Quadratic probing

 This is a method in which solving of clustering problem is done.

 In this method the hash function is defined by the H(key)=(H(key)+x*x)%table size.

Double hashing

 It is a technique in which two hash function are used when there is an occurrence of collision.

 It must never evaluate to zero.

 Must sure about the buckets, that they are probed.

 The hash functions for this technique are:

 H1(key)=key % table size

 H2(key)=P-(key mod P)

 Where, p is a prime number which should be taken smaller than the size of a hash table.

Separate Chaining:

 The idea is to make each cell of hash table point to a linked list of records that have same hash

function value.

 Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85,

92, 73, 101.

Main features of Extendible Hashing:

 The main features in this hashing technique are:

 Directories: The directories store addresses of the buckets in pointers. An id is assigned to each

directory which may change each time when Directory Expansion takes place.

 Buckets: The buckets are used to hash the actual data.

 Frequently used terms in Extendible Hashing:

 Directories: These containers store pointers to buckets. Each directory is given a unique id

which may change each time when expansion takes place. The hash function returns this

directory id which is used to navigate to the appropriate bucket. Number of Directories =

2^Global Depth.

Buckets: They store the hashed keys. Directories point to buckets. A bucket may contain more than

one pointers to it if its local depth is less than the global depth.

Global Depth: It is associated with the Directories. They denote the number of bits which are used by

the hash function to categorize the keys. Global Depth = Number of bits in directory id.

Local Depth: It is the same as that of Global Depth except for the fact that Local Depth is associated

with the buckets and not the directories. Bucket Splitting: When the number of elements in a bucket

exceeds a particular size, then the bucket is split into two parts.

Directory Expansion: Directory Expansion Takes place when a bucket overflows. Directory

Expansion is performed when the local depth of the overflowing bucket is equal to the global depth.

Basic Working of Extendible Hashing:

Step 1 – Analyze Data Elements: Data elements may exist in various forms eg. Integer, String, Float,

etc.. Currently, let us consider data elements of type integer. eg: 49.

Step 2 – Convert into binary format: Convert the data element in Binary form. For string elements,

consider the ASCII equivalent integer of the starting character and then convert the integer into binary

form. Since we have 49 as our data element, its binary form is 110001.

Step 3 – Check Global Depth of the directory. Suppose the global depth of the Hash-directory is 3.

Step 4 – Identify the Directory: Consider the „Global-Depth‟ number of LSBs in the binary number

and match it to the directory id.

Eg. The binary obtained is: 110001 and the global-depth is 3. So, the hash function will return 3 LSBs

of 110001 viz. 001.

Step 5 – Navigation: Now, navigate to the bucket pointed by the directory with directory-id 001.

Step 6 – Insertion and Overflow Check: Insert the element and check if the bucket overflows. If an

overflow is encountered, go to step 7 followed by Step 8, otherwise, go to step 9.

Step 7 – Tackling Over Flow Condition during Data Insertion: Many times, while inserting data in

the buckets, it might happen that the Bucket overflows. In such cases, we need to follow an appropriate

procedure to avoid mishandling of data.

Advantages:

1. Data retrieval is less expensive (in terms of computing).

2. No problem of Data-loss since the storage capacity increases dynamically.

3. With dynamic changes in hashing function, associated old values are rehashed w.r.t the new

hash function.

Limitations Of Extendible Hashing:

1. The directory size may increase significantly if several records are hashed on the same

directory while keeping the record distribution non-uniform.

2. Size of every bucket is fixed.

3. Memory is wasted in pointers when the global depth and local depth difference becomes

drastic.

This method is complicated to code.

Video Content / Details of Itbsite for further learning (if any):

https://www.includehelp.com/data-structure-tutorial/hashing.aspx

https://www.youtube.com/watch?v=Z-eW5qp7lvk

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 167-180

 Course Teacher

 Verified by HOD

https://www.includehelp.com/data-structure-tutorial/hashing.aspx

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Searching: Definition – Algorithm and Example for sequential search

Introduction :

 Searching is a process of finding a particular data item from a collection of data items based on

specific criteria.

 Searching is the process of locating given value position in a list of values.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data structure

 Searching

 Index value

Detailed content of the Lecture:

Searching

 Searching is the process of finding a given value position in a list of values.

 It decides whether a search key is present in the data or not.

 It is the algorithmic process of finding a particular item in a collection of items.

 It can be done on internal data structure or on external data structure.

Searching Techniques

To search an element in a given array, it can be done in following ways:

1. Sequential Search

2. Binary Search

Sequential Search

 Sequential search is also called as Linear Search.

 Sequential search starts at the beginning of the list and checks every element of the list.

 It is a basic and simple search algorithm.

 Sequential search compares the element with all the other elements given in the list. If the

element is matched, it returns the value index, else it returns -1.

L39 LECTURE HANDOUTS

II/III IT

Algorithm

Linear search is implemented using following steps.

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function

Step 4 - If both are not matched, then compare search element with the next element in the list.

Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

 It searches an element or value from an array till the desired element or value is not found.

 If we search the element 25, it will go step by step in a sequence order.

 It searches in a sequence order.

 Sequential search is applied on the unsorted or unordered list when there are fewer elements in

a list.

Pseudocode
procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

 end if

 end for

end procedure

Video Content / Details of Itbsite for further learning (if any):
http://www.btechsmartclass.com/data_structures/linear-search.html

https://www.youtube.com/watch?v=Z-eW5qp7lvk

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- page nos: 65-68

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/linear-search.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Binary search.

Introduction :

 Searching is a process of finding a particular data item from a collection of data items based on

specific criteria.

 Searching is the process of locating given value position in a list of values.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Data Structure

 Searching

 Index Value

Detailed content of the Lecture:

 Binary Search is used for searching an element in a sorted array.

 It is a fast search algorithm with run-time complexity of O(log n).

 Binary search works on the principle of divide and conquer.

 This searching technique looks for a particular element by comparing the middle most element

of the collection.

 It is useful when there are large number of elements in an array.

 The above array is sorted in ascending order. As we know binary search is applied on sorted lists

only for fast searching.

Algorithm
Binary search is implemented using following steps.

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.

Step 5 - If both are not matched, then check whether the search element is smaller or larger than

the middle element.

L40 LECTURE HANDOUTS

II/III IT

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left

sublist of the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right

sublist of the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist

contains only one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not found in the

list!!!" and terminate the function.

For example, if searching an element 25 in the 7-element array, following figure shows how binary

search works:

Video Content / Details of Itbsite for further learning (if any):

http://www.btechsmartclass.com/data_structures/binary-search.html
https://www.youtube.com/watch?v=Z-eW5qp7lvk

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- page nos:69-72

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/binary-search.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Sorting: Definition – Algorithm and Example for selection sort

Introduction :

 Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Array

 Index value

 sorting

Detailed content of the Lecture:

Sorting

 Sorting is a process of ordering or placing a list of elements from a collection in some kind of

order.

 It is nothing but storage of data in sorted order.

 Sorting can be done in ascending and descending order.

 It arranges the data in a sequence which makes searching easier.

Selection Sort

 Selection sort is a simple sorting algorithm which finds the smallest element in the array and

exchanges it with the element in the first position.

 Then finds the second smallest element and exchanges it with the element in the second position

and continues until the entire array is sorted.

Algorithm

Step 1 - Select the first element of the list (i.e., Element at first position in the list).

Step 2: Compare the selected element with all the other elements in the list.

Step 3: In every comparision, if any element is found smaller than the selected element (for

Ascending order), then both are swapped.

Step 4: Repeat the same procedure with element in the next position in the list till the entire list is

sorted.

L41 LECTURE HANDOUTS

II/III IT

Example

 The smallest element is found in first pass that is 9 and it is placed at the first position.

 In second pass, smallest element is searched from the rest of the element excluding first

element.Selection sort keeps doing this, until the array is sorted.

Video Content / Details of Itbsite for further learning (if any):
https://www.tutorialride.com/data-structures/selection-sort-in-data-structure.htm

https://www.youtube.com/watch?v=4OxBvBXon5w

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, Page Nos: 235-

248

 Course Teacher

 Verified by HOD

https://www.tutorialride.com/data-structures/selection-sort-in-data-structure.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Bubble sort, Insertion sort

Introduction :

 Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Array

 Index value

 sorting

Detailed content of the Lecture:

Sorting

 Sorting is a process of ordering or placing a list of elements from a collection in some kind of

order.

 It is nothing but storage of data in sorted order.

 Sorting can be done in ascending and descending order.

 It arranges the data in a sequence which makes searching easier.

Bubble sort

 Bubble sort is a type of sorting.

 It is used for sorting 'n' (number of items) elements.

 It compares all the elements one by one and sorts them based on their values.

Algorithm

 Starting with the first element(index = 0), compare the current element with the next element of

the array.

 If the current element is greater than the next element of the array, swap them.

 If the current element is less than the next element, move to the next element. Repeat Step 1.

Insertion Sort

 Insertion sort is a simple sorting algorithm.

 This sorting method sorts the array by shifting elements one by one.

 It builds the final sorted array one item at a time.

 Insertion sort has one of the simplest implementation.

 This sort is efficient for smaller data sets but it is insufficient for larger lists.

 It has less space complexity like bubble sort.

 It requires single additional memory space.

 Insertion sort does not change the relative order of elements with equal keys because it is stable.

L42 LECTURE HANDOUTS

II/III IT

Algorithm

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Video Content / Details of Itbsite for further learning (if any):

https://www.tutorialride.com/data-structures/selection-sort-in-data-structure.htm

https://www.youtube.com/watch?v=4OxBvBXon5w

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 235-248

 Course Teacher

 Verified by HOD

https://www.tutorialride.com/data-structures/selection-sort-in-data-structure.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Quick sort, merge sort

Introduction :

 Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pivot

 Index value

 sorting

Detailed content of the Lecture:

Quick Sort

 Quick sort is also known as Partition-exchange sort based on the rule of Divide and Conquer.

 It is a highly efficient sorting algorithm.

 Quick sort is the quickest comparison-based sorting algorithm.

 It is very fast and requires less additional space, only O(n log n) space is required.

 Quick sort picks an element as pivot and partitions the array around the picked pivot.

Algorithm for Quick Sort

Step 1: Choose the highest index value as pivot.

Step 2: Take two variables to point left and right of the list excluding pivot.

Step 3: Left points to the low index.

Step 4: Right points to the high index.

Step 5: While value at left < (Less than) pivot move right.

Step 6: While value at right > (Greater than) pivot move left.

Step 7: If both Step 5 and Step 6 does not match, swap left and right.

Step 8: If left = (Less than or Equal to) right, the point where they met is new pivot.

L43 LECTURE HANDOUTS

II/III IT

Example

Merge Sort

 Merge sort is a sorting technique based on divide and conquer technique.

 With worst-case time complexity being Ο(n log n), it is one of the most respected algorithms.

 Merge sort first divides the array into equal halves and then combines them in

a sorted manner.

The concept of Divide and Conquer involves three steps:

 Divide the problem into multiple small problems.

 Conquer the subproblems by solving them. The idea is to break down the problem into atomic

subproblems, where they are actually solved.

 Combine the solutions of the subproblems to find the solution of the actual problem.

Algorithm

Step 1 − if it is only one element in the list it is already sorted, return.

Step 2 − divide the list recursively into two halves until it can no more be divided.

Step 3 − merge the smaller lists into new list in sorted order.

Video Content / Details of Itbsite for further learning (if any):
https://www.tutorialspoint.com/data_structures_algorithms/insertion_sort_algorithm.htm

https://nptel.ac.in/courses/106105164/
Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 248-255

 Course Teacher

 Verified by HOD

https://www.tutorialspoint.com/data_structures_algorithms/insertion_sort_algorithm.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Radix sort

Introduction :

 Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pivot

 Index value

 sorting

Detailed content of the Lecture:

Radix sort

 Radix sort is one of the sorting algorithms used to sort a list of integer numbers in order.

 In radix sort algorithm, a list of integer numbers will be sorted based on the digits of individual

numbers.

 Sorting is performed from least significant digit to the most significant digit.

Radix sort algorithm requires the number of passes which are equal to the number of digits

present in the largest number among the list of numbers.

Algorithm

Step 1 - Define 10 queues each representing a bucket for each digit from 0 to 9.

Step 2 - Consider the least significant digit of each number in the list which is to be sorted.

Step 3 - Insert each number into their respective queue based on the least significant digit.

Step 4 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into their

respective queues.

Step 5 - Repeat from step 3 based on the next least significant digit.

Step 6 - Repeat from step 2 until all the numbers are grouped based on the most significant digit.

Complexity of the Radix sort

 Worst Case : O(n)

 Best Case : O(n)

 Average Case : O(n)

Video Content / Details of Itbsite for further learning (if any):
http://www.btechsmartclass.com/data_structures/radix-sort.html

https://nptel.ac.in/courses/106105164/
Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 256-261

 Course Teacher

 Verified by HOD

L44 LECTURE HANDOUTS

II/III IT

http://www.btechsmartclass.com/data_structures/radix-sort.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: Heap Sort

Introduction :

 Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Pivot

 Index value

 sorting

Detailed content of the Lecture:

 Heap Sort

 Heap sort is a comparison based sorting algorithm.

 It is a special tree-based data structure.

 Heap sort is similar to selection sort. The only difference is, it finds largest element and places the it

at the end.

 This sort is not a stable sort. It requires a constant space for sorting a list.

 It is very fast and widely used for sorting.

It has following two properties:

1. Structure Property

2. Heap order Property

1. Shape property represents all the nodes or levels of the tree are fully filled. Heap data structure is a

complete binary tree.

L45 LECTURE HANDOUTS

II/III IT

2. Heap property is a binary tree with special characteristics.

 It can be classified into two types:

I. Max Heap: If the parent nodes are greater than their child nodes, it is called a Max-Heap.

II. Min Heap: If the parent nodes are smaller than their child nodes, it is called a Min-Heap.

Algorithm

Step 1 - Construct a Binary Tree with given list of Elements.

Step 2 - Transform the Binary Tree into Min Heap.

Step 3 - Delete the root element from Min Heap using Heapify method.

Step 4 - Put the deleted element into the Sorted list.

Step 5 - Repeat the same until Min Heap becomes empty.

Step 6 - Display the sorted list.

Complexity of the Heap Sort

 Worst Case : O(n log n)

 Best Case : O(n log n)

 Average Case : O(n log n)

Video Content / Details of Itbsite for further learning (if any):
http://www.btechsmartclass.com/data_structures/radix-sort.html

https://nptel.ac.in/courses/106105164/
Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012, page nos: 256-261

 Course Teacher

 Verified by HOD

http://www.btechsmartclass.com/data_structures/radix-sort.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture:Splay Tree

Introduction :

 The topological sorting for a directed acyclic graph is the linear ordering of vertices.

 For every edge U-V of a directed graph, the vertex u will come before vertex v in the ordering.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Sorting

 DAG

 Degree

Detailed content of the Lecture:

 Topological Sort is a linear ordering of the vertices in such a way that if there is an edge in the DAG

going from vertex ‘u’ to vertex ‘v’,then ‘u’ comes before ‘v’ in the ordering.

Example

Find the number of different topological orderings possible for the given graph-

Solution-

The topological orderings of the above graph are found in the following steps-

Step-01:

Write in-degree of each vertex-

Step-02:

 Vertex-A has the least in-degree.

 So, remove vertex-A and its associated edges.

 Now, update the in-degree of other vertices.

L46 LECTURE HANDOUTS

II/III IT

 Step-03:

 Vertex-B has the least in-degree.

 So, remove vertex-B and its associated edges.

 Now, update the in-degree of other vertices.

 Step-04:

There are two vertices with the least in-degree. So, following 2 cases are possible-

Step-05:

 two cases are continued separately in the similar manner.

CONCLUSION

For the given graph, following 2 different topological orderings are possible

 ABDCE

 ABCDE

Video Content / Details of website for further learning (if any):
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.youtube.com/watch?v=eL-KzMXSXXI

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities Press.2008-

page nos:261-263

 Course Teacher

Verified by HOD

https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.coursera.org/lecture/data-structures/arrays-OsBSF

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakwa Dist., Tamil Nadu

Course Name with Code : DATA STRUCTURES-19ITC01

Course Teacher : E.Punarselvam

Unit : V Date of Lecture:

Topic of Lecture: AVL Tree

Introduction :

 AVL tree is a self-balanced binary search tree. That means, an AVL tree is a binary search tree

but it is a balanced tree.

 A binary tree is said to be balanced, if the difference between the heights of left and right

subtrees of every node in the tree is either -1, 0 or +1.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Binary Tree

 Binary Search Tree

 Complete Binary Tree

Detailed content of the Lecture: Binary tree is said to be balanced if for every node, height of its

children differ by at most one. In an AVL tree, every node maintains an extra information known

as balance factor to take care of the self-balancing nature of the tree.

An AVL tree is defined as follows

 An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every

node is either -1, 0 or +1

 Balance factor = height Of Left Subtree — height Of Right Subtree (OR) height Of Right

Subtree — height Of Left Subtree

An AVL tree is given in the following figure. We can see that, balance factor associated with each

node is in between the range of -1 to +1.

L47 LECTURE HANDOUTS

II/III IT

Why AVL Tree ? AVL tree controls the height of the binary search tree by not letting it to be skewed.

The time taken for all operations in a binary search tree of height h is O(h). However, it can be

extended to O(n) if the BST becomes skewed (i.e. worst case). By limiting this height to log n, AVL

tree imposes an upper bound on each operation to be O(log n) where n is the number of nodes.

AVL Tree Rotations ? In AVL tree, after performing every operation like insertion and deletion we

need to check the balance factor of every node in the tree. If every node satisfies the balance factor

condition then we conclude the operation otherwise we must make it balanced. We use rotation

operations to make the tree balanced whenever the tree is becoming imbalanced due to any operation.

Rotation is the process of moving the nodes to either left or right to make tree balanced in terms

of its height.To balance itself, an AVL tree may perform the following four kinds of rotations –

1. Left rotation (Single)

2. Right rotation (Single)

3. Left-Right rotation (Double)

4. Right-Left rotation (Double)

1. Left Rotation (Single LL)In LL Rotation every node moves one position to left from the current

position. To understand LL Rotation, let us consider following insertion operations into an AVL

Tree…

2.Right Rotation (Single RR)In RR Rotation every node moves one position to right from the current

position. To understand RR Rotation, let us consider following insertion operations into an AVL

Tree…

3. Left Right Rotation (Double — LR Rotation)The LR Rotation is combination of single left

rotation followed by single right rotation. In LR Rotation, first every node moves one position to left

then one position to right from the current position. To understand LR Rotation, let us consider

following insertion operations into an AVL Tree…

4. Right Left Rotation (Double — RL Rotation)

The RL Rotation is combination of single right rotation followed by single left rotation. In RL

Rotation, first every node moves one position to right then one position to left from the current

position. To understand RL Rotation, let us consider following insertion operations into an AVL

Tree…

Operations on AVL tree Due to the fact that, AVL tree is also a binary search tree therefore, all the

operations are performed in the same way as they are performed in a binary search tree. Searching and

traversing do not lead to the violation in property of AVL tree. However, insertion and deletion are the

operations which can violate this property.

1. Searching Searching in an AVL Tree is done as in any binary search tree. The Special thing about

AVL Tree is that the number of comparison required, i.e. The AVL three’s height, is guaranteed never

to exceed log(n).

Step 1: Read the search element from the user.

Step 2: Compare, the search element with the value of root node in the tree.

Step 3: If both are matching, then display “Given node found!!!” and terminate the function.

Step 4: If both are not matching, then check whether search element is smaller or larger than that node

value.

Step 5: If search element is smaller, then continue the search process in left subtree.

Step 6: If search element is larger, then continue the search process in right subtree.

Step 7: Repeat the same until we found exact element or we completed with a leaf node.

Step 8: If we reach to the node with search value, then display “Element is found” and terminate the

function.

Step 9: If we reach to a leaf node and it is also not matching, then display “Element not found” and

terminate the function.

2. Insertion

Insertion in AVL tree is performed in the same way as it is performed in a binary search tree. However,

it may lead to violation in the AVL tree property and therefore the tree may need balancing. The tree

can be balanced by applying rotations.

Step 1: Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2: After insertion, check the Balance Factor of every node.

Step 3: If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4: If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be imbalanced.

Then perform the suitable Rotation to make it balanced. And go for next operation.

3. Deletion
Deletion can also be performed in the same way as it is performed in a binary search tree. Deletion

may also disturb the balance of the tree therefore; various types of rotations are used to rebalance the

tree.

Important Books/Journals for further learning including the page nos.:

E.Horowitz,S.Sahni Susan , Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- page nos:261-263

 Course Teacher

Verified by HOD

