

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: INTRODUCTION: SOFTWARE LIFE-CYCLE ACTIVITIES

Introduction : (Maximum 5 sentences) :

 Software engineering aims to significantly improve software productivity and software quality

while reducing software costs and time to market.

 Software engineering consists of three tracks of interacting life cycle activities software

development, software quality assurance; and software project management activities.

 Object-oriented (OO) software engineering is a specialization of software engineering.

 It views the world and systems as consisting of objects that interact with each other.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Basic of Software Engineering

Detailed content of the Lecture:
WHAT IS SOFTWARE ENGINEERING?

 Software systems are complex intellectual products. Software development must ensure that the

software system satisfies its requirements, the budget is not overrun, and the system is delivered

according to schedule.

 Software engineering as a discipline is focused on the research, education, and application of

engineering processes and methods to significantly increase software productivity and software

quality while reducing software costs and time to market.

 The overall objectives of software engineering are significantly increasing software

productivity (P) and qualify (QJ while reducing software production and operating costs (C)

and time to market (T). These objectives are abbreviated as PQCT.

 Research, education, and application of software engineering processes and-methods are the

means to accomplish these goals.

 These processes and methods are classified into three sets of activities: development, quality

assurance, and project management activities.

 The development activities transform an initial system concept into an operational system.

 The quality assurance activities ensure that the development activities are carried out correctly

and that the artifacts produced by the activities are correct.

L-1
LECTURE HANDOUTS

IV/II CSE

 These ensure that the desired software system is produced and delivered.

 Project management activities plan for the project, schedule and allocate resources to the

development and quality assurance activities, and ensure that the system is developed and

delivered on time and within budget.

WHY IS SOFTWARE ENGINEERING?

 First, software is expanding into all sectors of our society. Companies rely on software to run

and expand their businesses.

 Software systems are getting larger- and more complex. Today, it is common to develop

systems that contain millions of lines of source code.

 For many embedded systems, software cost has increased to 90%-95% of the total system cost

from 5%-10% two decades ago.

 Some embedded systems use application specific integrated circuits (ASIC) and firmware.

These are integrated circuits with the software burned into the hardware.

 They are costly to replace; and hence, the quality of the software is critical. These call for a

software engineering approach to system development.

 Second, software engineering supports teamwork, which is needed for large system

development. Large software systems require considerable effort to design, implement, and test.

 A typical software engineer can produce average 50-100 lines of source code per day.

 This includes the time required to perform analysis, design, implementation, integration, and

testing.

 Thus, a small system of 10000 lines of code would require one software engineer to work

between 100 and 200 days or 5 to 10 months.

 A medium-size system of 500,000 lines of source cede, would require a software engineer to

work 5,000 to 10,000days or 20 to 4(1 years. It is not acceptable for most businesses to wait

this long for their systems.

 Therefore, real world software systems must be designed and implemented by a team or teams

of software engineers.

 Therefore, real world software systems must be designed and implemented by a team or teams

of software engineers. For example, a medium-size software system requires 20 to 40 software

engineers to work for one year.

 When two or more software engineers work together to develop a software system, serious

conceptualization, communication, and coordination problems arise.

 Conceptualization is the process of observing and classifying real-world phenomena to form a

mental model to help understand the application for which the system is built.

 Conceptualization is a challenge for teamwork because the software engineers may perceive the

world differently due to differences in their education, cultural backgrounds, career

experiences, assumptions, and other factors.

 The ancient story about four blind men and an elephant illustrates this problem. The four blind

men wanted to know what an elephant looked like.

 They obtained permission to touch the elephant. One blind man touched one leg of the elephant

and said that an elephant was like a tree trunk.

 The other three touched the elephant's stomach, tail, and car respectively. They said that an

elephant was like a Wall, a rope, and a fan.

 We as software developers arc like the four blind men trying to perceive or understand an

application.

 If the developers perceive the application differently, then how can they design and implement

software components to work with each other?

 Software engineering provides a solution, when a team of software engineers work together,

they need to exchange their understanding and design ideas. However, the natural language is

too informal and often leads 10 misunderstanding.

 Software engineering provides the Unified Modeling Language (UML) for software engineers

to communicate their ideas. Finally, when teams of software engineers work together, how can

they collaborate and coordinate their efforts?

 For example how do they divide the work ad assign the pieces to the teams and team members?

How do they integrate the components designed and implemented by different teams and team

members? Again, software engineering provides a solution.

Video Content / Details of website for further learning (if any):
https://www.guru99.com/what-is-software-engineering.html

https://www.youtube.com/watch?v=WxkP5KR_Emk

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013,T1 (4-10)

 Course Faculty

 Verified by HOD

https://www.youtube.com/watch?v=WxkP5KR_Emk

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: SOFTWARE LIFE-CYCLE ACTIVITIES

Introduction : (Maximum 5 sentences) :

 First, software is expanding into all sectors of our society. Companies rely on software to run

and expand their businesses. Software systems are getting larger- and more complex.

 Second, software engineering supports teamwork, which is needed for large system

development. Large software systems require considerable effort to design, implement, and test.

 A typical software engineer can produce average 50-100 lines of source code per day. This

includes the time required to perform analysis, design, implementation. integration, and testing.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software Engineering

 Software Development

Detailed content of the Lecture:

 Software engineering focuses on three tracks of activities as exhibits. These activities take place

simultaneously throughout the software life cycle.

 Software development process. A software development process transforms the initial system

concept into the operational system running in the target environment.

 It identifies the business needs, conducts a feasibility study, and formulates the requirements or

capabilities that the system must deliver.

 It also designs, implements, tests, and deploys the system to the target environment.

 Software quality assurance. Software quality assurance (SQA) ensures that the development

activities are performed properly, and the software artifacts produced by the development

activities meet the software requirements and desired quality standards.

L-2
LECTURE HANDOUTS

II/IV CSE

 Software project management. Software project management oversees the control and

administration of the development and SQA activities.

 Project management activities include effort estimation. Project planning and scheduling, risk

management, and project administration, among others.

 These activities ensure that the software system is delivered on time and within budget.

Software Development Process

 A software development process is often called a software process. The need for a process is

similar to custom home construction and many others major undertakings.

 The activities of custom home construction include acquisition of home buyer requirements,

custom home design, build, inspection, and delivery.

 A software process consists of a series of phases of activities performed to produce the software

system.

 In some cases, the software system is a part of a larger system.

System Requirements Definition, System Design, and Allocation

 These are system engineering activities often performed for embedded systems.

 System requirements definition identifies the capabilities for the total system and formulates

them as system requirements.

Software Requirements Analysis

 Software requirements analysis refines the system requirements allocated to the software

system. It also identifies other capabilities for the software system. These and the refined

system requirements arc specified in a software requirements specification (SRS).

Software design

 Software design determines the software architecture, or the overall structure, of the software

system.

 It specifies the subsystems, their relationships the subsystems functions, interfaces, and how the

subsystems interact with each other.

 Design of the user interface is another important activity of software design.

 That is, it depicts the look and feel of the windows and dialogs, and describes how the system

interacts with the users.

Software Implementation, Testing, and Maintenance.

 During the implementation and unit testing phase, programs are written to implement the

design. The programs are tested, and reviewed by peers to ensure correctness and compliance to

coding standards.

 During the integration phase, the program modules are integrated and tested to ensure that they

work with each other.

 During acceptance testing, test cases are designed and run to check that the software indeed

satisfies the software requirements.

Software project Management

Software project management activities ensure that the software system under development will be

delivered on schedule and within the budget constraint.

Effort estimation.

Effort estimation derives the human resources and durations required to perform the development and

SQA activities.

Project planning and scheduling.

 Project planning and scheduling are aimed at producing an overall plan for the project, The

project plan will guide the project teams throughout the life-cycle process.

 Risk management. Many events could jeopardize a project. For example, a management person

or a key technical staff leaves the project, or the project is far behind schedule. These are called

risk items.

 Project administration. Project administration is an ongoing function of project management. It

performs the management activities as specified in the project plan.

 Software configuration management. During the development process, numerous software

artifacts are produced. These include requirements specification, software design, code, test

cases, user's manual, and the like. These compose the software, or part of it, under different

stages of the development process.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

https://www.cleverism.com/software-development-life-cycle-sdlc-methodologies/

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013, Page No (4-10)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: OBJECT ORIENTED SOFTWARE ENGINEERING

Introduction : (Maximum 5 sentences) :

 First, software is expanding into all sectors of our society. Companies rely on software to run

and expand their businesses. Software systems are getting larger- and more complex.

 Today, it is common to develop systems that contain millions of lines of source code. For many

embedded systems, software cost has increased t0l90%-95% of the total system cost from 5%-

10% two decades ago.

 Second, software engineering supports teamwork, which is needed for large system

development.

 Large software systems require considerable effort to design, implement, and test. A typical

software engineer can produce average 50-100 lines of source code per day. This includes the

time required to perform analysis, design, implementation. integration, and testing.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software Engineering

 Software Life Cycle

OO Modeling and design languages

 00 modeling and design languages for the team members to communicate their analysis and

design ideas: A modeling and design language defines the notions and notations as well as rules

for using the notations

 The Unified Modeling Language (UML) [36] is the most widely used00 modeling and design

language.

00 software development processes

 00 software development processes to guide the development effort. The unified process (UP)

L-3
LECTURE HANDOUTS

II/IV

 IV

CSE

is a well-known development process while agile processes have emerged in recent years.

 00 software development methodologies that detail the steps or how to carry out the activities

of a software process.

00 development tools and environments

 There are commercial products as well as public domain software. For example, the Net Beans

integrated development environment (IDE) is a free, open source software. It comes with a

bundle of plugins that support activities of the entire software development life cycle.

Object-Oriented Modeling and Design Languages

 The rapid spread of C++ in the 1980s motivated the need for a development methodology

to guide 00 software development efforts. Three influential 00 development methodologies,

among many others were proposed and widely used in the software industry.

 These are Booch Diagram, Object Modeling Technique (OMT) and Use Case Engineering.

 The industry soon discovered that it was a monumental challenge to integrate systems designed

and implemented using different methodologies.

 The reason is that different methodologies use different modeling concepts and notations. To

solve this problem, the Object Management Group (OMG) adopted the Unified Modeling

Language (UML) as an OMG standard.

 UML diagrams are used in the requirements analysis phase to help the development team

understand the business of the existing application.

 They are used in the design phase as part of the design specification. UML diagrams will be

presented throughout the rest of this book.

Object-Oriented Development Process

 The sequential nature of the waterfall process implies that changes to the requirements are

difficult and costly, This is because any change to the requirements affects the design and

implementation; these must be changed as well.

 The long development duration of the waterfall process implies that the system is dated as soon

as it is released.

 To overcome these problems, several software process models have been proposed. All of these

adopt an iterative, rather than a strictly sequential, process of development actives. Examples

are the spiral process, the unified process, and agile processes.

Object-Oriented Development Methodologies

 A software process speci fies "when to do what," but not "how to do them" That-is it defines

the development activities but not how to perform the activities.

 UML is a modeling language. It lets the software engineers describe their analysis and design

ideas using the diagrams. It does not help the software engineers to produce the analysis and

design ideas.

 A software development methodology fills the gap. It specifies the steps and how to perform

the steps to carry out the activities of a software process. Conventional 00 development

methodologies include Booch Diagram, Object Modeling Techniques (OMT). use Case

Engineering. and other methods.

 Agile methods include Serum, Dynamic System Development Method (DSDM). Feature

Driven Development (FDD), Crystal Clear, Extreme Programming (XP), Lean Development

Method; and others.

00 Replace the Conventional Approaches

 First, maintaining numerous conventional systems is required. Second, numerous organizations

still use the conventional approaches.

 Third, a conventional methodology may be more appropriate for some projects such as

scientific computing. Finally, a system may consist of components developed by conventional

and 00 approaches. Therefore, 00 and conventional approaches will coexist for many years

Video Content / Details of website for further learning (if any):

http://cs-exhibitions.uni-klu.ac.at/index.php?id=448

 https://www.youtube.com/watch?v=BqVqjJq7_vI

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013, Page No (11-13)

 Course Faculty

 Verified by HOD

http://cs-exhibitions.uni-klu.ac.at/index.php?id=448

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: SOFTWARE PROCESS

Introduction : (Maximum 5 sentences) :

 Software process is a series of phases of activities performed to' construct a software system.

 Each phase produces some artifacts which are the input to other phases. Each phase has a set of

entrance criteria and a set of exit criteria.

 Software development is not a scientific process-in other words, many decisions are not made

scientifically but politically and economically.

 For example, a good enough algorithm is chosen instead of an optimal one because it is more

economical to implement, use, and maintain the good-enough algorithms.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software Engineering

 OOSE

Detailed content of the Lecture:

SOFTWARE PROCESS MODELS

 Problems with the waterfall process have led researchers and funding agencies to find a better

process that considers the wicked properties of software development.

Prototyping Process

 The prototyping process model recognizes the mismatch between the- newly constructed

software system and users' expectations, and the challenge to deliver the capabilities within the

time and budget constraints.
 As a solution, a prototype of the system is constructed and-used to acquire and validate

requirements. Prototypes are also used in feasibility studies as well as design validation.

L-4
LECTURE HANDOUTS

II/IV CSE

Evolutionary Process

 Prototypes help requirements acquisition, requirements validation, feasibility study, and

validation of design ideas.
 However, throwaway prototypes imply that much effort is wasted. This is true when

sophisticated prototypes are needed for feasibility study and design validation of large, real-

time embedded systems.
 The evolutionary process model is aimed at solving this problem by letting the prototype

evolves. It lets the users experiment with an initial prototype, constructed according to a set of

preliminary requirements.

Personal Software Process

 The personal software process (PSP) is a comprehensive framework that is designed to train

individual software engineers to improve their personal software processes.

 PSP consists of a series of scripts, forms, standards, and guidelines that the software engineer

can apply to carry out a number of predefined programming exercises.

The PSP Process/Evolution

 To facilitate learning, the PSP uses an evolutionary approach. That is, the framework is

presented in a series of predefined processes, named PSPO, PSPO.I, PSP1, PSPl.l, PSP2,

PSP2.1 and PSP3.0.

 Each of these processes introduces a couple of good software engineering techniques or

practices.

PSPO and PSPO.l.

 These two processes introduce process discipline and measurement.

 In particular, PSPO introduces the baseline process, time recording, defect recording, and

defect type standard. PSPO.I introduces ceding standard, size measurement, and process

improvement proposal.

PSP1 and PSP1.1.

 These two processes introduce estimations and planning.

 In particular, PSPI introduces size estimation and test report while PSPI.I covers planning and

scheduling.

PSP2 and PSP2.1.

 These two processes introduce quality management and design.

 In particular, PSP2 presents code review and design review; and PSP2.1 introduces and design

template.

PSP3.0.

 This process is designed to guide the development of component-level programs.

PSP Script

 In PSP, all processes are described using process scripts or scripts for short.

 Each script specifies the purpose, the entry criteria, the steps or activities of the process, and the

exit criteria.

Spiral Process

 The spiral process proposed by Barry, Boehm is known for its unique feature for risk

management.

 Each cycle of the spiral is aimed at enhancing a certain aspect of the system under

development.

 For example, functionality, performance or quality.

1. Determine the objectives alternatives, and constraints/or the current cycle (the Northwest

corner of the spiral).

2. Evaluate alternatives, identify and evolve risks (the northeast corner of the spiral).

3.Develop and verify next level system

4. Plan next phases

Agile Processes

 The waterfall process works well for tame problems because such problems possess a number

of nice properties.
 Application software development is a wicked problem. It needs a process that is designed to

solve wicked problems.

Agile Manifesto
According to the Agile Manifesto,' agile development values four aspects of software development

practices, which are different from their conventional plan-driven counterparts. These are listed and

explained below.

• Agile development values individuals and interactions over processes and tools.

 • Agile development values working software over comprehensive documentation.

 • Agile development values customer collaboration over contract negotiation.

 • Agile development values responding w change over fallowing a plan.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/software-processes-in-software- engineering/

https://www.youtube.com/watch?v=YMbAdgb6pG8

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013, Page No (17-18)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: SOFTWARE DEVELOPMENT METHODOLOGY

Introduction : (Maximum 5 sentences) :

 Software development requires not only a process but also a methodology or development

method. Unfortunately, the term "methodology" is often left undefined. This leads to a certain

degree of confusion. For example, methodology is often confused with process.

 Process and methodology are important concepts of software engineering. Second, software

engineering supports teamwork, which is needed for large system development.

 Large software systems require considerable effort to design, implement, and test. A typical

software engineer can produce average 50-100 lines of source code per day. This includes the time

required to perform analysis, design, implementation, integration, and testing.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software Life Cycle

 Process and methodology

Detailed content of the Lecture:
Difference between Process and Methodology

 A software process defines the phased activities or what to do in each phase, it does not specify

how to perform the activities.

 A software methodology defines the detailed steps or how to carry out the activities of a process.

 A software process specifies the input and output of each phase, but it does not dictate the

representations of the input and output.

 A methodology defines the steps, step entrance, and exit criteria, and relationships between the

steps.

L-5
LECTURE HANDOUTS

II/IV CSE

Structured Methodologies

 Structured analysis uses data flow diagrams (DFOs) to model the business processes of real-world

applications.

 A DFD is essentially a directed graph, in which the vertexes represent external entities, business

processes, and data stores while the directed edges represent data flows between them.

 Divide-and-conquer is employed during structured analysis to decompose complex business

processes into lower-level data flow diagrams.

 The steps of structured analysis begin with the construction of a top-level OFD, called the context

diagram.

 It depicts the system as the sole process, which interacts with external entities and external data

stores. The next steps repeatedly decompose complex processes into simpler processes.

 This is because the relationships between the processes of a DFD are data flow relationships while

the relationships between the software modules are control flow relationships.

 The so-called structured design fills the gap.

Classical OO Methodologies

 Before UML, there were classical 00 methodologies, with three of them widely known.

 They are the Booch Method, the Object Modeling Technique (GMT), and the Use case driven

approach.

 These three methodologies provide the basis for the UML 1.0.

 The classical 00 methodologies were used by numerous software development organizations and

contributed to the bloom of the OO paradigm.

 But the software industry soon discovered that it was a nightmare to integrate and maintain

systems that were developed using different methodologies.

 It was also very costly to support different tools that use different methodologies. These problems

called for a unified modeling method and led to the creation of UML and UP.

Video Content / Details of website for further learning (if any):
https://en.wikipedia.org/wiki/Software_development_process

https://www.alliancesoftware.com.au/introduction-software-development-methodologies/

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”, 2013,

Page No (21-39)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: Software Process Models

Introduction : (Maximum 5 sentences) :

 Problems with the waterfall process have led researchers and funding agencies to find a better

process that considers the wicked properties of software development.

 Tons of money and effort have been poured into this research. As a result, many software

.process models have been proposed.

 Most models adopt an iterative, rather than a strictly sequential, process of activities.

 This section reviews some of these process models.

Prerequisite knowledge for Complete understanding and learning of Topic:

 software development

 Software Process and Methodology

Detailed content of the Lecture:

Prototyping Process

 The prototyping process model recognizes the mismatch between the- newly constructed

software system and users' expectations, and the challenge to deliver the capabilities within the

time and budget constraints.

 As a solution, a prototype of the system is constructed and-used to acquire and validate

requirements.

 Prototypes are also used in feasibility studies as well as design validation.

 A prototype can be very simple or very sophisticated. A simple prototype shows only the look

and feel and a sequence of screen shots to illustrate how the system would interact with a user.

 A sophisticated prototype may implement many of the system functions.

 Prototypes are generally classified into throwaway prototypes and evolutionary prototypes.

 A throwaway prototype is constructed quickly and economically-just enough to serve its

purpose.

 A throwaway prototype could be reused in unit or integration testings as a reference

implementation to check whether the implementation produces the correct result.

L-6
LECTURE HANDOUTS

II/IV CSE

 Furthermore, it could be used to train users before the system IS released.

Evolutionary Process

 Prototypes help requirements acquisition, requirements validation, feasibility study, and

validation of design ideas.

 However, throwaway prototypes imply that much effort is wasted. This is true when

sophisticated prototypes are needed for feasibility study and design validation of large, real-

time embedded systems.

 The evolutionary process model is aimed at solving this problem by letting the prototype

evolves. It lets the users experiment with an initial prototype, constructed according to a set of

preliminary requirements.

Personal Software Process

 The personal software process (PSP) is a comprehensive framework that is designed to train

individual software engineers to improve their personal software processes.

 PSP consists of a series of scripts, forms, standards, and guidelines that the software engineer

can apply to carry out a number of predefined programming exercises.

The PSP Process/Evolution

 To facilitate learning, the PSP uses an evolutionary approach. That is, the framework is

presented in a series of predefined processes, named PSPO, PSPO.I, PSP1, PSPl.l, PSP2,

PSP2.1 and PSP3.0.

 Each of these processes introduces a couple of good software engineering techniques or

practices.

PSPO and PSPO.l.

 These two processes introduce process discipline and measurement.

 In particular, PSPO introduces the baseline process, time recording, defect recording, and

defect type standard. PSPO.I introduces ceding standard, size measurement, and process

improvement proposal.

PSP1 and PSP1.1.

 These two processes introduce estimations and planning.

 In particular, PSPI introduces size estimation and test report while PSPI.I covers planning and

scheduling.

PSP2 and PSP2.1.

 These two processes introduce quality management and design.

 In particular, PSP2 presents code review and design review; and PSP2.1 introduces and design

template.

PSP3.0.

 This process is designed to guide the development of component-level programs.

PSP Script

 In PSP, all processes are described using process scripts or scripts for short.

 Each script specifies the purpose, the entry criteria, the steps or activities of the process, and the

exit criteria.

Spiral Process

 The spiral process proposed by Barry, Boehm is known for its unique feature for risk

management.

 Each cycle of the spiral is aimed at enhancing a certain aspect of the system under

development.

 For example, functionality, performance or quality.

1. Determine the objectives alternatives, and constraints/or the current cycle (the Northwest

corner of the spiral).

2. Evaluate alternatives, identify and evolve risks (the northeast corner of the spiral).

3.Develop and verify next level system

4. Plan next phases

Video Content / Details of website for further learning (if any):
http://users.csc.calpoly.edu/~jdalbey/308/Lectures/SoftwareProcessModels.html

https://www.youtube.com/watch?v=kwsKr1MObxs

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013,Page No (21-39)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: AGILE METHODS

Introduction : (Maximum 5 sentences) :

 Agile processes emphasize short iterations and frequent delivery of small increments.

 Although they differ in the naming and detail of the phases, all agile methods more or less cover

requirements, design, implementation, integration, testing, and deployment activities during each

iteration.

Prerequisite knowledge for Complete understanding and learning of Topic:

Detailed content of the Lecture:

Agile Methods

 Like the evolutionary prototyping model and the spiral model, all agile methods adopt an iterative,

incremental development process.

 However, all agile methods follow the agile manifesto presented.

 However, their emphases are different from conventional processes. For example, agile processes

value working software over comprehensive documentation.

 This means barely enough modeling in the requirements and design phases.

 This section describes several of the most widely used agile methods.

 Each of these methods has a long list of principles, features, values and best practices.

Dynamic Systems Development

 The DSDM emerged in the early 19905 in the United Kingdom as an alternative to rapid

application development (RAD). It is a process framework that different projects can adapt to

L-7
LECTURE HANDOUTS

 IV/II

/II

IV

CSE

perform rapid application development. It has been deemed by some authors to be most suited to

financial services applications.

Serum

 Scrum is a framework that allows organizations to employ and improve their software development

practices.

 It consists of the Serum teams, the roles within a team, the time boxes, the artifacts, and the Serum

rules.

 Scrum is an iterative, incremental approach that aims to optimize predictability and control risk.

Feature Driven Development

 The Feature Driven Development (FDD) method consists of six steps or phases.

 The first three are performed once and the last three are iterative.

 The FDD method is considered more suitable for developing mission critical systems by its

advocates.

 The six phases of FDD are briefly described as follows:

1. Develop overall model.

 During this phase, a domain expert provides a walkthrough of the overall system, which may

include decomposition into subsystems and components.

 Additional walkthroughs of the subsystems or components may be provided by experts in their

domains. Based on the walkthroughs, small groups of developers produce object models for the

respective domains.

 The development teams then work together to produce an overall model for the system.

2. Build a feature list.

 During this phase, the team produces a feature list representing the business functions to be

delivered by the system.

3. Plan by feature.

 During this phase, the team produces an overall plan to guide the incremental development and

deployment of the features, according to their priorities and dependencies. The features are

assigned to the chief programmers.

4. Design by feature; build by feature, and deployment.

 These three phases are iterative, during which the increments are designed, implemented,

reviewed, tested, and deployed. Multiple teams may work on different sets of features

simultaneously.

 Each increment lasts a few days to a few weeks.

Extreme Programming

 Extreme programming or XP is an agile method suitable for small teams facing vague and

changing requirements.

 The XP process consists of six phases:

 1. Exploration.

 2. Planning.

 3. Iterations to first release.

 4. Productionizing

 5. Maintenance

 6. Death

Video Content / Details of website for further learning (if any):
https://resources.collab.net/agile-101/agile-methodologies

https://www.youtube.com/watch?v=ZZ_vnqvW4DQ

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

 2013, Page No (40-44)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: SYSTEM ENGINEERING REQUIREMENTS

Introduction : (Maximum 5 sentences) :

 System engineering is a multidisciplinary approach to develop systems that involve hardware,

software, and human components.

 System engineering defines the system requirements and constraints for the system.

 It allocates the requirements to the hardware, software, and human subsystems, and integrates

these subsystems to form the system.

 Software engineering is a part of system engineering.

 Many systems are embedded systems.

 An embedded system consists of hardware, software, and human components. These

components interact with each other to accomplish the mission of the system.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software engineering

 Software Development

Detailed content of the Lecture:

WHAT IS A SYSTEM?

 A system consists of components that interact with each other to accomplish a purpose.

 A system can be big or small, complex or simple, and exist physically or only conceptually.

 For example, the universe is a very large system that has been in existence for millions of

years. An ant is a very small system. These systems are natural systems.

 In contrast to natural systems, there are many man-made systems. Man-made systems may exist

physically or only conceptually. Mathematical logic, number systems, measurement systems,

and many classification systems are examples of conceptual systems.

SYSTEM ENGINEERING

L-8
LECTURE HANDOUTS

II/IV CSE

 System development for the ABHS must consider the total system rather than the software

system alone.

 In addition, the ABHS involves multiple engineering disciplines including electrical and

electronic engineering, mechanical engineering, civil engineering, and software engineering.

SYSTEM REQUIREMENTS DEFINITION

 System requirements definition identifies the business needs and specifies the system

requirements.

 It begins with an initial system concept and expands and refines the concept. During this

process, a set of capabilities that the system must deliver is identified.

 These capabilities are formulated as system requirements. The system requirements include

functional requirements, quality requirements, performance requirements, and other system-

specific requirements. This section describes the system requirements definition activity.

1. Identifying Business Needs

 Identifying business needs begins with an information collection activity.

 That is, information about the business goals and the current business situation is collected.

 The team identifies the gap between the current situation and the business goals, and derives

the business needs.

The information collection activity answers the following questions:

1. What is the business that-the system will automate?

2. What is the system's environment or context?

3. What are the business goals or product goals?

4. What is the current business situation, and how does it operate?

5. What are the existing business processes, and how do they relate to-each other'!

6. What are the problems with the current system?

7. Who are the users of the current system and the future system, respectively?

8. What do the customer and users want from the future system, and what are their business priorities?

9. What are the quality, performance, and security considerations?

Defining System Requirements

 The next step is deriving system requirements from the business needs identified.

 For example, the capabilities of the ABHS are derived to satisfy the needs of the ABHS.

 However, not all needs are to be satisfied due to budget, delivery schedule technology, and

political constraints as well as cost-effectiveness considerations.

The requirements are numbered to facilitate reference:

Rl. ABHS shall check in and transport luggage to departure gates and baggage

claim areas according to the destinations of the passengers.

R2. ABHS shall allow airline agents to inquire about luggage status and to locate

luggage.

R3. ABHS shall check all baggage and detect items that are prohibited.

R4. ABHS shall be able to serve 20,000 passengers per day.

Video Content / Details of website for further learning (if any):
https://www.sebokwiki.org/wiki/System_Requirements

https://www.youtube.com/watch?v=qaiSB1bdS_8

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013, Page No (53-60)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : I Date of Lecture:

Topic of Lecture: Architectural Design

Introduction : (Maximum 5 sentences) :

 After the system requirements are identified, the next logical step is to design the

 System to satisfy the system requirements. Ideally, the system should be designed and

 Implemented by engineers who are experts in all the engineering disciplines involved.

 Unfortunately, such engineers are hard to find and expensive to hire. Therefore, systems

 Are usually decomposed into a hierarchy of subsystems. which can be developed

Prerequisite knowledge for Complete understanding and learning of Topic:

 system requirements

Detailed content of the Lecture:

SYSTEM ARCHITECTURAL DESIGN

 System architectural design performs the following interrelated activities:

1. Decompose the system into a hierarchy of subsystems.

2. Allocate system requirements to subsystems.

3. Visualize the system architecture.

System Decomposition

 One important task of system architectural design is identifying the subsystems of the system.

A top-down, divide-and-conquer approach is often used.

 In particular the approach decomposes the system into a hierarchy of subsystems. This

approach reduces the complexity of system development because each subsystem is easier to

design and implement.

L-9
LECTURE HANDOUTS

II/IV CSE

 There are different ways to decompose a system.

 Therefore, the result is not unique. System decomposition aims at accomplishing the following

goals:

1. The result should enable separate engineering teams to develop the subsystems.

2. The result should facilitate the use of commercial off-the-shelf (COTS) parts.

3. The result should partition or nearly partition the system requirements.

4. Each subsystem should have a well-defined functionality.

5. The subsystems should be relatively independent.

6. The subsystems should be easy to integrate.

Architectural Design Diagrams

 It is a common practice to construct application models and system models during system

design.

 These models help the team understand and analyze the application domain, business

processes, and workflows to identify problems, and develop and evaluate design solutions.

 Various diagrams are used to depict different aspects of the application and the system. Block

diagrams, Unified Modeling Language (UML), and its extension, System Modeling Language

(SysML), and data flow diagrams are widely used during system modeling and design.

Block diagram for an airport baggage handling system

 The ability of UML to support system modeling leads to an extension of UML,that is, the

System Modeling Language (SysML). The nine diagrams of SysML and how they relate to

UML are summarized in below diagram.

Specification of Subsystem Functions and Interfaces

 This step specifies the functionality of each subsystem and how the subsystems interact with

each other.

 The functionality is specified according to the system requirements allocated to the subsystem.

It refines the requirements assigned to each subsystem.

 The interfaces between the subsystems specify how the subsystems connect and communicate

with each other.

 The interaction behavior specifies the sequences of messages exchanged between the

subsystems.

 These enable the teams that implement the subsystems to know what interfaces and interaction

behavior they can expect and need to provide.

Video Content / Details of website for further learning (if any):
http://ecomputernotes.com/software-engineering/architecturaldesign

https://www.youtube.com/watch?v=ly8orBNiNQM

Important Books/Journals for further learning including the page nos.:
McGraw-Hill Education,’’ Object-Oriented Software Engineering: An Agile Unified Methodology”,

2013, Page No (61-72)

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:SOFTWARE REQUIREMENTS ELICITATION

Introduction :

 Software systems are built for many different reasons.

 A software project is successful if the system satisfies its software requirements, the budget is

not overrun, and the system is delivered as scheduled.

 The main difference between requirements and constraints is that constraints reduce the number

of design and implementation alternatives.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 Software Engineering

 Software development

Detailed content of the Lecture:
IMPORTANCE OF REQUIREMENTS ELICITATION

 Two real-world stories illustrate the importance of requirements elicitation. More than 40 years

ago in the beginning of the 1970s. I had the opportunity to work on a project for the electric

utility industry. We worked days and nights for two years, meeting the customer representatives

Performing design, implementation, and testing. Finally we delivered the system to the

customer and celebrated the victory with a champagne party.

CHALLENGES OF REQUIREMENTS ELICITATION:

 The development team does not know enough about the application and application domain.
 Customers and users do not know what software can do and how to express their needs.

L-
LECTURE HANDOUTS

II/IV CSE

 Lack of a common background creates a communication barrier between the team and customer

and users.
TYPES OF REQUIREMENT

 Performance requirements

 Quality requirements

 Safety requirements

 Security requirements

 Interface requirements

STEPS FOR REQUIREMENTS ELICITATION

 Step 1. Collecting information about the application.

 Step 2. Constructing analysis models if desired.

 Step 3. Deriving requirements and constraints.

 Step 4. Conducting feasibility study.

 Step 5. Reviewing the requirements specification.

Focuses of Information-Collection Activities

 The information-collection activities must focus on acquiring information about the application

the business processes, and the application domain.

Information-Collection Techniques

Information-collection methods and techniques are applied to find answers to the questions

presented previously. These techniques include

 1. Customer presentation

 2. Literature survey

 3. Study of existing business procedures and forms

 4. Stakeholder survey

 5. User interviewing

 6. Writing user stories

Current Business Situation

 The OIE is located in a building somewhat distant from the main campus. It is difficult for

students to access the OIE.

 The Study Abroad Program of the OIE is mainly a manual operation. It is time consuming

to process student inquiries and study abroad applications.

Business Goals

1. Greatly facilitate students' access to the OIE Study Abroad Program.

2. Significantly improve the effectiveness and efficiency of the services provided by the Study

Abroad Program.

Wish List
A website for the Study Abroad Program. The system is named Study Abroad Management System

(SAMS). A list of similar websites was suggested by the OIE.

REQUIREMENTS MANAGEMENT AND TOOLS

 Requirements change is common for many software projects. The changes include adding new

requirements, modifying and deleting existing requirements.

 Changing a requirement may affect several artifacts and other requirement items.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12015
https://www.youtube.com/watch?v=42_J-W7RumE

Important Books/Journals for further learning including the page nos.:
Books
1. David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill Education 2013

 Page No:80-101

Journals

https://www.researchgate.net/publication/326544173

https://ieeexplore.ieee.org/document/8513829

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12015
https://www.youtube.com/watch?v=42_J-W7RumE
https://www.researchgate.net/publication/326544173
https://ieeexplore.ieee.org/document/8513829

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit :IIDate of Lecture:

Topic of Lecture:DOMAIN MODELING

Introduction : (Maximum 5 sentences) :

 Domain modeling is a conceptualization process to help the development team understand the

application domain.

 Five easy steps:

o collecting information about the application domain;

o brainstorming;

o classifying brainstorming results;

o visualizing the domain model using a UML class diagram;

o Performing-inspection and review.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Software

Detailed content of the Lecture:

One of the tools that enables the engineer to this is called domain modeling. Throughout this chapter.

you will learn:

 • Domain modeling.

 • The importance of domain modeling.

 • Object-oriented concepts.

 • Domain modeling steps.

 • UML class diagram.

Domain Modeling:

o Domain modeling is a conceptualization process. It aims to identify. important domain

concepts, their properties, and relationships between the concepts. The result is

portrayed in a diagram called a domain model.

o A software engineer like Mary, who works in IT consulting, of tell works on projects in

different application domains.

o Even if a software engineer is not a consultant. He or she may be required to work on

new projects or novel extensions of existing systems.

o Software engineering is both challenging and full of’ excitement because engineers get

to work on new applications from time to time.

o A good software engineer can quickly understand anew application domain.

L-
LECTURE HANDOUTS

II/IV CSE

IMPORATNCE:

• The construction of a domain model helps in identifying and resolving

differences in perception. In particular.

• Domain modeling helps the development team or the analyst understand the

application and the application domain.

• Domain modeling Jets the team members communicate and improve their

common perception of the application and application domain.

• Domain modeling helps the development team communicate their perception to

the customer or users and seek feedback.

• Domain modeling provides a common conceptual basis for the subsequent

design, implementation, testing, and maintenance.

• A domain model can help new team members understand the relevant

application and the application domain.

• The conceptualization process involves observation, classification, abstraction,

and generalization. The process is important because in a broad sense software is

merely a conceptual product.

• This requires the development team to understand the entities or objects in the

banking application and how they relate to each other, the properties or states of

the banking objects and so on.

• If the differences in perception are immaterial, then they will not significantly

impact the design, implementation, integration, testing, and maintenance of the

software product.

Object Oriented Concepts

 Itstarted right from the moment computers were invented. Programming was there, and

programming approaches came into the picture.

 Programming is basically giving certain instructions to the computer.

Domain Modeling

 It is understood as abstract modeling. a site model could be an illustration of the ideas or

objects showing within the drawback domain. It additionally captures the apparent relationships among

these objects. Samples of such abstract objects area unit the Book, Book Register, member register,

Library Member, etc.

o Boundary Objects
o Entity Objects
o Controller Objects

UML Class Diagram
 It is the general purpose modeling language used to visualize the system. It is a graphical

language that is standard to the software industry for specifying, visualizing, constructing and

documenting the artifacts of the software systems, as well as for business modeling.

Benefits of UML:

 Simplifies complex software design, can also implement OOPs like concept which is widely

used.

 It reduces thousands of words of explanation in a few graphical diagrams that may reduce time

consumption to understand.

 It makes communication more clear and real.

 It helps to acquire the entire system in a view.

 It becomes very much easy for the software programmer to implement the actual demand once

they have the clear picture of the problem.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/

https://www.tutorialride.com/software-engineering/oo-design-concept-in-software-engineering.htm

https://www.geeksforgeeks.org/software-engineering-domain-modeling/

https://www.youtube.com/watch?v=UI6lqHOVHic

Important Books/Journals for further learning including the page nos.:
BOOKS:
David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013 Page No:105-107

Journals
https://link.springer.com/article/10.1007/BF02687879

https://www.researchgate.net/publication/324345033_Optimizing_UML_Class_Diagrams

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/
https://www.tutorialride.com/software-engineering/oo-design-concept-in-software-engineering.htm
https://www.geeksforgeeks.org/software-engineering-domain-modeling/
https://www.youtube.com/watch?v=UI6lqHOVHic
https://link.springer.com/article/10.1007/BF02687879
https://www.researchgate.net/publication/324345033_Optimizing_UML_Class_Diagrams

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:OBJECT-ORIENTATION

Introduction : (Maximum 5 sentences)

o Domain modeling aims to identify important domain concepts and their properties, and

relationships between the concepts.

o These are represented as classes and relationships between the classes, and can be

depicted with UML class diagrams.

o This section reviews some of the basic concepts of the object-oriented paradigm and

how these are displayed in UML class diagrams.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

Detailed content of the Lecture:

Extensional and Intentional Definitions:

 An extensional definition defines a concept by enumerating instances of the concept.

 An extensional definition of even numbers could be the set of numbers consisting of ... , -4, - 2,

0: 2, 4, ...

 For the child, the extensional definition of "dog" consists of his neighbor's dog. the dog across

the street, the dog that lives near the park, and so forth.

 As the child sees more of the world, he learns that cats and dogs behave differently but that tile

are animals.

L-

LECTURE HANDOUTS

II/IV CSE

Class and Object

 A class is a type, an intentional definition ora concept. A class encapsulates its attributes and

operations that characterize the instances of the class. An object is an instance of a class.

Object and Attribute

 An application domain object has an independent existence in the application or application

domain; an attribute does not.

 Attribute describe and characterize object.

 Attributes can be entered from an input device but objects cannot: Objects are created by

calling a function.

ASSOCIATION

 An association is a relation between one or more classes. It states that 0njects of one class may

relate to objects of the other classes.

Multiplicity and Role

 The multiplicity of a class with respect to an association is an assertion to the number of

instances of the class that may relate each combination of one instance of each of other classes in the

association.

Aggregation

Inheritance:

 Inheritance is a binary relation between two concepts or classes such that one concept or class

is a generalization of the other.

Association Class

 An Association class is a special class that defines properties and behaviors for the instances of

an association.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/uml/uml_class_diagram.htm

https://www.youtube.com/watch?v=o_-1HSAaWTQ

Important Books/Journals for further learning including the page nos.:

Books

2. David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-

Hill Education 2013 Page No:107-117

Journals

https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-

Oriented_Software_Development

http://downloads.hindawi.com/journals/sp/2015/421816.pdf

Course Faculty

Verified by HOD

https://www.tutorialspoint.com/uml/uml_class_diagram.htm
https://www.youtube.com/watch?v=o_-1HSAaWTQ
https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-Oriented_Software_Development
https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-Oriented_Software_Development
http://downloads.hindawi.com/journals/sp/2015/421816.pdf

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:OBJECT-ORIENTATION -CLASS DIAGRAM

Introduction : (Maximum 5 sentences)

o Domain modeling aims to identify important domain concepts and their properties, and

relationships between the concepts.

o These are represented as classes and relationships between the classes, and can be

depicted with UML class diagrams.

o This section reviews some of the basic concepts of the object-oriented paradigm and

how these are displayed in UML class diagrams.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Software Requirements

 Domain Modeling

Detailed content of the Lecture:

Extensional and Intentional Definitions:

 An extensional definition defines a concept by enumerating instances of the concept.

 An extensional definition of even numbers could be the set of numbers consisting of ... , -4, - 2,

0: 2, 4, ...

L-

LECTURE HANDOUTS

II/IV CSE

Class and Object

 A class is a type, an intentional definition ora concept. A class encapsulates its attributes and

operations that characterize the instances of the class. An object is an instance of a class.

Object and Attribute

 An application domain object has an independent existence in the application or application

domain; an attribute does not.

 Attribute describe and characterize object.

 Attributes can be entered from an input device but objects cannot: Objects are created by

calling a function.

ASSOCIATION

 An association is a relation between one or more classes. It states that 0njects of one class may

relate to objects of the other classes.

Multiplicity and Role

 The multiplicity of a class with respect to an association is an assertion to the number of

instances of the class that may relate each combination of one instance of each of other classes in the

association.

Aggregation

Inheritance:

 Inheritance is a binary relation between two concepts or classes such that one concept or class

is a generalization of the other.

Association Class

 An Association class is a special class that defines properties and behaviors for the instances of

an association.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/uml/uml_class_diagram.htm

https://www.youtube.com/watch?v=o_-1HSAaWTQ

Important Books/Journals for further learning including the page nos.:

Books

3. David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-

Hill Education 2013 Page No:107-117

Journals

https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-

Oriented_Software_Development

http://downloads.hindawi.com/journals/sp/2015/421816.pdf

Course Faculty

Verified by HOD

https://www.tutorialspoint.com/uml/uml_class_diagram.htm
https://www.youtube.com/watch?v=o_-1HSAaWTQ
https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-Oriented_Software_Development
https://www.researchgate.net/publication/220625913_Role_of_UML_Class_Diagram_in_Object-Oriented_Software_Development
http://downloads.hindawi.com/journals/sp/2015/421816.pdf

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:STEPS FOR DOMAIN MODELING

Introduction : (Maximum 5 sentences)
 With the object-oriented notions reviewed in the previous sections, it is time to describe

the steps for domain modeling. It shows the steps and their input and output.

 These steps may need to be kilted a few times to produce a good domain model. They

are outlined as follows and described in detail.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Domain Modeling

 Object Orientation
Detailed content of the Lecture:
Step 1. Collecting application domain information.

 The first step to domain modeling is collecting application domain information.

 Techniques for collecting application domain information have been described previously and will be

reviewed-again.

 The output of this step includes all relevant information Documentation about the application.

Step 2. Brainstorming.

 After collecting information about the application domain, the development team members

meet together to identical! and list important application domain concepts as described in Section

L-

LECTURE HANDOUTS

II/IV CSE

Collecting Application Domain Information:

 Customer presentation.

 Interviewing customer representatives, users, and domain experts.

 Study of relevant literature.

 Study of similar projects.

 Study of business documentation and forms.

 Study of government policies and regulations.

 Study of industry standards.

 Development and use of questionnaires.

Brainstorming

 Focus on domain specific or domain relevant concepts and relationships.

 Ignore design and implementation concepts.

Classifying Brainstorming Results

o The listed phrases ace classified into classes, attributes, attribute values, and relationships.

o This is done by applying the classification rules shown

o The classification codes in Figure 5.l0 are used to indicate the classification result

Visualizing the Domain Model

o In this step, the classification result is visualized by using a class diagram. Once the classes,

attributes. and relationships are identified and documented converting the result to a ctass

diagram is an easy task.

o It shows the conversion rules and examples from the previous sections. Since the conversion is

trivial, the drawing can be outsourced, or performed by an assistant to reduce cost.

o Convert the classification result obtained in into a class

Video Content / Details of website for further learning (if any):
http://stg-tud.github.io/eise/WS11-EiSE-07-Domain_Modeling.pdf

https://en.wikipedia.org/wiki/Domain_model

https://www.youtube.com/watch?v=M1e2XwSADDE

https://www.youtube.com/watch?v=DHJwT-sI0f4

Important Books/Journals for further learning including the page nos.:

BooksDavid Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-

Hill Education 2013 Page No:117-130

Course Faculty

Verified by HOD

http://stg-tud.github.io/eise/WS11-EiSE-07-Domain_Modeling.pdf
https://en.wikipedia.org/wiki/Domain_model
https://www.youtube.com/watch?v=M1e2XwSADDE
https://www.youtube.com/watch?v=DHJwT-sI0f4

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:ARCHITECTURAL DESIGN

Introduction : (Maximum 5 sentences)
 The software architecture defines the structure of the software system in terms of the

subsystems and their interrelationships.

 As pointed out that the beginning of this chapter the software architecture is the primary artifact

for conceptualizing. constructing, managing, and evolving the system under developers.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 Domain Modeling

Detailed content of the Lecture:

Conceptualization.

 The architecture defines the overall structure of the system. Therefore, in subsequent

development activities, the architecture helps the development team to think of the system in'terms of

its overall structure. Consider, for example. the N-tier architecture. It depicts the system as consisting

of N layers of components, with each higher layer requesting services from the next lower layer.

Construction.

 The architecture facilitates the construction of the software system because it lets the learn

members know how to organize the software artifacts produced during the development process.

Consider again the N~tier architecture for an interactive system, It typically consists of the' following

layers, listed from high to low.

The presentation layer.

 This layeris responsible for presenting the graphical user interface and system response the.

The business objects layer:

 This layer is responsible for processing the business transactions represented by the use cases. '

The persistence storage layer.

 This layer consists of objects that provide database-related functions such as object storage and

retrieval.

The network communication layer.

 This layer provides network communication-related functions. The responsibilities of and the

dependencies.

Managing:

 The software architecture provides an architectural view for organizing the software artifacts

LECTURE HANDOUTS

II/IV CSE

L-

produced during the development process.

Evolving:

 The architecture provides a basis for evolving and expanding the system. For example. a library

information system is an interactive system. Initially, the system is not designed to support interlibrary

loan, probably due to budget limitations.

o The package diagram in Library information system defines logic as organization or logical

view of the classes of the library information system.

o Package diagrams help the team members understand which artifacts belong to which packages,

o The package hierarchy (wherein one package can own other packages) facilitates change control

because the packages to be changed and the packages impacted can be identified at any level of

the hierarchy.

o Without such a logical organization, configuration management of the classes and other artifacts

would be more difficult.
Video Content / Details of website for further learning (if any):
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/

https://www.tutorialspoint.com/software_architecture_design/architecture_models.htm

https://www.youtube.com/playlist?list=PLAwxTw4SYaPkMTetlG7xKWaI5ZAZFX8fL

Important Books/Journals for further learning including the page nos.:
Books
David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013 Page No:158-160

Journals
https://www.researchgate.net/publication/266139171

https://ieeexplore.ieee.org/document/1605177

http://web.mit.edu/richh/www/writings/hilliard99a-using-uml-for-AD.pdf

CourseFaculty

Verified by HOD

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/
https://www.tutorialspoint.com/software_architecture_design/architecture_models.htm
https://www.youtube.com/playlist?list=PLAwxTw4SYaPkMTetlG7xKWaI5ZAZFX8fL
https://www.researchgate.net/publication/266139171
https://ieeexplore.ieee.org/document/1605177
http://web.mit.edu/richh/www/writings/hilliard99a-using-uml-for-AD.pdf

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented SoftwareEngineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:Architectural DesignProcess Style

Introduction :
 It showed that different types of systems require different software architectures. Therefore, it

is important to select an architectural style that matches the system under development.

 An architectural style is a generic architectural design that can be adopted or adapted for a

system.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Architectural Design

Detailed content of the Lecture:

N-tier architecture
 This architectural style arranges the system components into a number of relatively

independent, loosely coupled layers. Each layer has a well-defined functionality. It reduces change

impact to other layers. It is useful for the design of interactive systems.

Client-server architecture
 This architectural style consists of one server that provides services to a number of clients. The-

clients know the server, the server does not know the clients, and the clients do not know each other. In

this sense, it reduces the coupling of the clients and the server.

L-

LECTURE HANDOUTS

II/IV CSE

Main program and subroutines architecture

 This architectural Style organizes the components of the system into a tree structure, in which

computation begins with the root or main program and is carried out by the descendant’s recursively

down the tree, It is useful for designing transformational or work flow-oriented systems.

Event driven system architecture

 This architectural style consists of a state- . .based controller that interacts with, and controls a number

of components. The controller knows the components and vice versa, but tile components do not know

each other. Idle action between the components is mediated by the controller. It is useful for designing

event -driven, embedded systems.

Persistence framework architecture
This architectural style hides the databases and file systems by decoupling them from the objects that

use them. That is, the objects are unaware of the existence of such storage devices; and hence, all

changes to the databases and file system have no impact to the objects.

Other Architectural Styles

 Peer to Peer

 Pipe and Filter

 Blackboard

 Service Oriented Architecture

 Cloud computing Architecture

Specify Subsystem functions and interfaces

 The interfaces between the subsystems are specified in this step, The specification of the

interfaces defines the input and output of each subsystem including the number, types, and order of the

input parameters arid similarly for the output.

Review the Architectural Design

 The architectural design is reviewed to ensure that the design objectives and software

requirements are satisfied.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/software-engineering-architectural-design/

https://cs.ccsu.edu/~stan/classes/CS410/Notes16/06-ArchitecturalDesign.html
https://www.youtube.com/watch?v=TzYYG06x9e0

https://www.youtube.com/watch?v=JLbo9Lvvy5M

Important Books/Journals for further learning including the page nos.:
Books:
4. David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-

Hill Education 2013 Page No:139-169

Journals
https://www.researchgate.net/publication/321675591

https://www.sciencedirect.com/science/article/pii/S187705091503183X

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/software-engineering-architectural-design/
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/06-ArchitecturalDesign.html
https://www.youtube.com/watch?v=TzYYG06x9e0
https://www.youtube.com/watch?v=JLbo9Lvvy5M
https://www.researchgate.net/publication/321675591
https://www.sciencedirect.com/science/article/pii/S187705091503183X

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering/16CSD04

Course Faculty :

Unit : IIDate of Lecture:

Topic of Lecture:ARCHITECTURAL DESIGN PACKAGE DIAGRAM

Introduction :
 The software architecture of a system or subsystem refers to the style of design of the structure

of the system including the interfacing and interaction among its major components.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Domain Modeling

Detailed content of the Lecture:

IMPORTANCE OF ARCHITECTURAL DESIGN

 The importance of architectural design can never be overstated, as explained by the following

story that took place many years ago.
ARCHITECTURAL DESIGN PROCESS

 The architectural design process for a software system or subsystem is a decision-making,

cognitive process.

 It needs to consider many factors. The type of the system to be developed is an important

consideration. Experiences show that the type of system influences the selection of the architectural

style.

 Ease of change and maintenance

 Use of commercial off the shelf parts

 System Performance

 Security

 Reliability

 Software Fault Tolerance

 Recovery

L- LECTURE HANDOUTS

II/IV CSE

 Determine design objective

 Determine type of System

 Apply an Architectural Design

 Specify Subsystems, interface and interaction behavior.

 Review the architectural design

Determine System Type:

 The type of a system significantly influences the modeling. analysis design implementation

and testing of a system.

Interactive Systems

 The interaction between the system and the actor to carry out a business process consists of a

relatively fixed sequence of actor requests and system responses as 'illustrated in Figure 6.2(a).

 The system has to process and respond to each request from the actor.

 Often, the system interacts with only one actor during the process of a use case.

Event-Driven Systems

 The system receives events from and controls the external entities.

 In general, event-driven systems do not have a fixed sequence of incoming requests; the

requests arrive at the system randomly.

Transformational Systems

 Transformational systems-can be. conceptually viewed as consisting of a network of

information-processing activities, each of which transforms its input into its output as illustrated .

 The network of activities may involve control flows that exhibit sequencing, conditional

branching, and parallel threads as well as synchronous and asynchronous behavior.

Object-Persistence Subsystems

o It hides the database from the rest ofthe system and shields the rest of the system from

changes to database implementation.

o Unlike the other three types of subsystems, a database subsystem is responsible only for

storing and retrieving objects from the database. It does little or no business processing

except in a few cases when doing so can substantially improve performance, such as

when a large number of records needs to be updated

o A database subsystem is capable of efficient storage, retrieval, and updating of a huge

amount of structured and complex data.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/software-engineering-architectural-design/

https://www.tutorialspoint.com/software_architecture_design/introduction.htm

https://www.youtube.com/watch?v=kerqiiJZcm0

Important Books/Journals for further learning including the page nos.:
Books:
David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013 Page No: 139-169

Journals
https://www.journals.elsevier.com/journal-of-systems-architecture

https://ijcsmc.com/docs/papers/March2016/V5I3201613.pdf

https://www.researchgate.net/publication

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/software-engineering-architectural-design/
https://www.tutorialspoint.com/software_architecture_design/introduction.htm
https://www.youtube.com/watch?v=kerqiiJZcm0
https://www.journals.elsevier.com/journal-of-systems-architecture
https://ijcsmc.com/docs/papers/March2016/V5I3201613.pdf
https://www.researchgate.net/publication

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering 16CSD04
CourseFaculty :

Unit : IIDate of Lecture:

Topic of Lecture:APPLYING SOFTWARE DESIGN PRINCIPLES

Introduction :
 Software design principles are widely accepted guiding rules for software design –
correctly applying these principles can significantly improve software quality.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Architectural Design
 Software design

Detailed content of the Lecture:

 Software design principles are collective wisdom acquired and validated by the software

engineering community during decades of software research and development (R&D). They are

valuable assets of the community.

 The next several sections are devoted to the study of software design principles including

design for change, separation of concerns, information hiding, high cohesion, low coupling, and keep it

simple and stupid (KISS)..

Design for Change
 The design for change principle is rooted on the fact that change is the way of1ife. Numerous

events could cause changes to a system. A few of these are given below-to motivate:

 Changes to software requirements are needed to respond to changes in the business

environment.

 Changes to the software system are needed to fix problems in the system.

 Changes to the system are needed due to changes in hardware, platform, system operating

environment, and the like.

Separation of Concerns

 Separation of concerns was proposed by Edsger Dijkstra as a problem-solving principle, that is;

focusing on one aspect of the problem in isolation rather than talking all aspects simultaneously.

 first(): This function .sets the cursor to r~fer to the first element of the aggregate.

 next(): This function advances the cursor to the next available element.

 isDone(): boolean This function returns true if all elements of the aggregate are visited.

 getElement(): Object This function returns the element referred to by the cursor.

High Cohesion

L-

LECTURE HANDOUTS

II/IV CSE

 The high cohesion principle came from modular design in the conventional structured analysis

and structured design paradigm.

 In structured design, the software system is-decomposed into a treelike hierarchy of modules in

which higher-level modules call-lower-level modules and synthesize-the results retuned from

the lower-level modules.

Low Coupling

 The Low Coupling Principle also came from the structured analysis and structured design

paradigm.

 In structured design, coupling measures the degree of run-time effect due to dependencies and

interaction between the modules, in other words, the degree of impact of the run-time behavior

of a given module on the run-time behavior of other modules.

GUIDELINES FOR ARCHITECTURAL DESIGN

 Adapt an architectural style when possible

 Apply software design principles.

 Apply design patterns.

 Check against design objectives and design principles.

 Iterate the steps if needed.

ARCHITECTURAL DESIGN AND DESIGN PATTERNS

 Design patterns are proven design solutions to commonly encountered design problems. As

such, design patterns are widely used in architectural design and architectural styles.

 The persistence framework combines several design 'patterns to accomplish a number of design

objectives such as design for change low coupling, high cohesion, separation of concerns, and

designing stupid objects.

 The patterns used include bridge, command, proxy, and template method. Part (Applying

Situation-Specific Patterns) presents these patterns as well as the design of the persistence

framework.

Video Content / Details of website for further learning (if any):
http://user.it.uu.se/~carle/softcraft/notes/SoftwareDesignPrinciples.pdf

http://ecomputernotes.com/software-engineering/principles-of-software-design-and-concepts

https://www.youtube.com/watch?v=WV2Ed1QTst8

https://www.youtube.com/watch?v=HLFbeC78YlU

Important Books/Journals for further learning including the page nos.:
Books:
David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013 Page No:160-166

Journals
https://www.researchgate.net/journal/1945-3116_Journal_of_Software_Engineering_and_Applications

https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-

Empirical-Assessment.pdf

 CourseFaculty

Verified by HOD

http://user.it.uu.se/~carle/softcraft/notes/SoftwareDesignPrinciples.pdf
http://ecomputernotes.com/software-engineering/principles-of-software-design-and-concepts
https://www.youtube.com/watch?v=WV2Ed1QTst8
https://www.youtube.com/watch?v=HLFbeC78YlU
https://www.researchgate.net/journal/1945-3116_Journal_of_Software_Engineering_and_Applications
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture : Deriving Use Cases from Requirements

Introduction : (Maximum 5 sentences) :

 The fundamental goal of each software project is to build and deliver the right product for

target users.

 But : What is a 'right product'?

 The right product is a product that the customers want, need, and desire. Unfortunately, no one

knows at upfront what they want and need, including the customers themselves.

 A systematic approach that helps you identifies customers needs.

 It involves an upfront recognition of business goals to be satisfied, and gradually a discovery of

requirements based around the goals.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Agile Principles

 Architectural Design

 Design Patterns

 UML

Detailed content of the Lecture:

Use case and use case diagram

What is use case?

 A use case describes a specific business goal to be satisfied by the system to be built.

Graphically, it is an oval with a name, which looks simple but is yet the most commonly used

tool in managing business goals or project goals.

What is use case diagram?

 A use case diagram is a kind of Unified Modeling Language (UML) diagram created for

requirement elicitation.

L-
LECTURE HANDOUTS

II/IV CSE

 Use case diagram provides a graphical overview of goals (modeled by use cases) users

(represented by actors) want to achieve by using the system.

 Use cases in a use case diagram can be organized and arranged according to their relevance,

level of abstraction and impacts to users.

 They can be connected to show their dependency, inclusion and extension relationships.

 The main purpose of modeling use case with use case diagram is to establish a solid foundation

of the system by identifying what the users want.

 Based on the result, you can move forward to study how to fulfill those user needs.

What is user story?

 Anyone who has experience in software development would probably have suffered from

communication issues with stakeholders.

 User story is a great way of opening discussion with stakeholders for ensuring the development

team knows what stakeholders want.

 User stories created by the product owner capture "who", "what" and "why" of a requirement

simply and concisely, which is typically written in natural language in a non-technical format.

 Agile development has entered into the mainstream of development approach hand-in-hand

with user stories for requirement discovery.

Discovering user stories with use cases

 It is important to note that use cases alone represent goals but not the actual requirements to be

supported. Nevertheless, use cases provide a great starting point to the discovery of

requirements.

Here are the benefits:

 Use cases provide a clear project scope. The chance of identifying requirements beyond the

project scope can be reduced

 Requirements derived from use cases are guaranteed to be aligned with the business vision and

goals.

 Traceability between use case and requirements helps clarify the rationale of requirements at

any moment of software project.

 To summarize: Use cases can be effective when you use it as a tool for requirements discovery

and management.

Drawing Use Case Diagram in Visual Paradigm

 You can develop a use case model and write user stories with Visual Paradigm. We will make

use of a hotel reservation system as an example.

 Let's start by drawing a use case diagram.

 Create a new project in Visual Paradigm by selecting Project > New from the toolbar. In the

New Project window, name the project Hotel Reservation System and click Create Blank

Project at the bottom.

 To create a Use Case Diagram, select Diagram > New from the toolbar. In the New

Diagram window, select Use Case Diagram and click Next.

 Keep "Blank" selected and click Next. Enter System Use Cases as diagram name and

click OK.

 Press on Actor in the diagram toolbar. Drag it onto the diagram to create an actor and name

it Customer.

 The system will let users make a reservation, which is a use case of the system. Let's create a

use case for it. Move the mouse pointer over the Customer actor.

 Press on the Resource Catalog icon at the top right and drag it out.

 Select Association -> Use Case in Resource Catalog.

 Release the mouse button to create the use case. Name it Make Reservation. The association

between actor and use case indicates that the actor will interact with the system to achieve the

use case associated.

Video Content / Details of website for further learning (if any):

https://www.visual-paradigm.com/tutorials/writingeffectiveusecase.jsp

https://www.youtube.com/watch?v=HshfGCgWaE4

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page no: 172-198

 Course Faculty

 Verified by HOD

https://www.visual-paradigm.com/tutorials/writingeffectiveusecase.jsp

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Actor-system interaction modeling

Introduction : (Maximum 5 sentences) :

 Actor-system interaction modeling is modeling and design of how the system interacts with the

actors to carry out the use cases.

 Actor-system interaction modeling is accomplished by constructing a two-column table that

describes, for each interaction, the actor input and actor action, and the system response.

 Focuses on the modeling and design of such interaction behavior.

 Derive the use cases from the requirements and how to specify the scope of each use case. The

results are referred to as abstract use cases and high-level use cases.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Use cases and Use cases Diagram

 Actor

 Action

 Operation

Detailed content of the Lecture:

USE CASES ARE MODELED WITH THREE LEVELS OF ABSTRACTION:

1) Abstract use case: using a verb and a noun phrase

2) High level use case: stating exactly when and where the use case begins and when it ends using

TUCBW ... (This use case begins with ...) and TUCEW ... (This use case ends with ...)

3) Expanded use case: describing step by step how the actor and the system interact to accomplish the

business task using a two column table.

ACTOR-SYSTEM INTERACTION MODELING :

Actor-system interaction modeling is the modeling and design of how the system interacts with-the

actors to carry out the use cases.

As shown in Figure, the left column specifies the actor input and/or actor actions; the right column

specifies the corresponding system responses. More specifically, the two-column tabular specification

L-
LECTURE HANDOUTS

II/IV CSE

of an expanded use case illustrates the following :

1. Use-case ID and name. This is shown at the top of the table in Figure.

2. The initial state of the user interface. Step 0 on the right column specifies. The initial state of the

user interface before the use case begins. It is important to specify the initial state of the user interface

because: (a)' it tells the developer what the system should display to-the actor; and (b) it tells the actor

what he or she will see before the use case begins.

3. When and where to start the use case. Step I on the left column specifies when and where the use

case begins. This is the TUCBW clause of the high-level use case.

4. The actor input and actor action at each step of the interaction. This is specified in the left column on

each row of the two-column table.

5. The corresponding system response. This is specified in the right column on the corresponding row

of the two-column table.

6. When the use case ends. The last entry of the left column specifies when the use case ends. This is

the TUCEW clause of the high-level use case.

IMPORTANCE OF ACTOR-SYSTEM INTERACTION MODELING

The usefulness of the expanded use case specification includes the following:

1. It specifies the actor-system interaction or system's interactive behavior that the subsequent design,

implementation, and testing can follow.

2. It can be used to generate the preliminary user's manual. This is because the expanded use case

describes exactly how the user will use the system to accomplish a business task..The preliminary

user's manual facilitates a potential user to experiment with a prototype of the system.

3. If updated timely to reflect changes in actor-system interaction during the subsequent design and

implementation phases, the updated expanded use case specification can be used to generate the as-

built user's manual. This reduces the increment or system deployment effort, cost and time.

4. It can be used to generate use case-based test cases.

STEPS FOR ACTOR-SYSTEM INTERACTION MODELING

The main activity of actor-system interaction modeling is constructing expanded use cases for the use

cases allocated to the current iteration. It involves the following steps:

• Step 1.Initialize a two-column table for the expanded use case being constructed.

• Step 2. Specify each of the actor-system interaction steps until the system produce, the response

 specified in the TUCEW clause.

• Step 3. Review the actor-system interaction using a review checklist.

Initializing a Two-Column Table

 Draw a two-column table and show the use case ID and use case name at the top of the table.

 Name the headers of the left and right columns with the role name of the actor and the

system/subsystem name, respectively.

 Enter the TUCBW and TUCEW clauses of the corresponding high -level use case to the second

and third entries of the left column, and label them step 1 and step 3 respectively.

 The step number 3 will increase as more steps are inserted. Leave the first entry of the left

column, that is, the entry right beneath the left column header, blank.

 Next, infer the initial system display according to the TUCBW clause of the use case and

specify this in the first entry of the right column.

 Label this step as step 0.

 Figure show the result of this step for a library information system (LIS). Note that main menu

is referred to in the TUCBW clause in step 1, therefore, step 0 is 0.

 The LIS displays the main menu.

Specifying Actor-System Interaction Steps

 In this step, the actor-system interaction steps arc specified.

 It begins with the TUCBW clause in step 1.

 The corresponding system response is derived and entered as step 2 in the right column.

 The result is written as "the system displays ,.

 In general, the system displays the result or a dialog to acquire actor input.

 If actor input is required, then a row is inserted and the actor input and actor action are

specified.

 This process is repeated for the remaining steps until the system produces the response specified

in the TUCEW clause.

 Sometimes, the system requires the actor to enter information about a domain concept.

 Such information is usually found in the domain model.

Reviewing Actor-System Interaction Specifications :

The expanded use cases produced in the current iteration are reviewed using the following review

checklist:

1. Are there a use case ID and a use case name for the specification? Do they match with the use case

ID and name in the requirement-use case traceability matrix and the corresponding high-level use case?

2, Are the actor and system correctly identified and specified and match with the counterparts in the

high-level use case?

3. Does the expanded use case specify the initial system display in step O?

4. Are the TUCBW and TUCEW clauses matched with their counterparts in the high-level use case?

5. Does the use case begin and end with the actor on the left column?

6. Are there blank entries during the course of interaction between the actor and the system?

7. Does the expanded use case correctly and adequately specify the actor-system interaction to carry

out the business process?

8. Do the left-column steps clearly and correctly specify the actor input, and actor actions such as

clicking the OK button?

9. Do the right -column steps clearly and correctly specify the system responses to the actor?

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:200-213

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Object Interaction Modeling

Introduction : (Maximum 5 sentences) :

 Object Interaction Modeling demonstrates the dynamic behavior that occurs between objects by

integrating the static Class Model with use cases.

 The Class Model defines the internal structure of objects but says nothing about how they inter-

operate whereas use cases depict the operations between objects in the problem domain without

concern for the internal composition of the objects themselves.

 You can model different aspects of the system domain, reflecting system needs from different

user perspectives by depicting the interaction and messaging between objects in the system.

 Collectively these views and their underlying definitions are referred to as the Object

Interaction Model.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 Actor-system interaction modeling

 Object

 Class

 Sequence diagram

Detailed content of the Lecture:

 The integration of use cases and Class Diagrams in the development of Sequence Diagrams is

an iterative process during which the Use Case Model (the users view) and the Class Model

(the developers view) is cross checked with user requirements and refined.

 Object Interaction Modeling in Modeler involves two types of modeling diagram derived from

the Class Model and use cases:

 Sequence Diagram used to describe a use case or an operation in terms of the constructs of

sequence, selection and iteration; the passage of time is depicted by an invisible time axis

running downward through the diagram

 Communication Diagram used to describe a scenario or path within a use case; comprising

objects and message flows between objects, in a snapshot of a time-lapse interaction; each path

through the structured language of a Sequence Diagram can be modeled by its own

L-
LECTURE HANDOUTS

II/IV CSE

Communication Diagram; typically only the most important scenarios are modeled with

Communication Diagrams.

 A Sequence Diagram will map directly to one use case. A typical use case will consist of a set

of scenarios, or paths, through the system being modeled representing different options within

the use case. Each execution path can be represented by a unique Communication Diagram.

Therefore several Communication Diagrams can map to one Sequence Diagram.

OBJECT INTERACTION MODEL

 Object Interaction Modeling demonstrates the dynamic behavior that occurs between objects by

integrating the static Class Model with Use Cases.

 For information about Object Interaction Modeling in Modeler, see Object interaction

modeling.

 You can view the Object Interaction Model part of a model through the Object Interaction

Model folder in the Relationships pane.

STEPS FOR OBJECT INTERACTION MODELING

 The steps for OIM are depicted in Figure and outlined in the following list. They are performed

for the use cases that are allocated to the current iteration.

Step I. Collecting information about the existing business processes.

 In this step, the development team collects and studies information about the existing business

processes of the use cases.

Step 2. Specify scenarios for the nontrivial steps of the expanded use cases

 In this step, nontrivial steps of the expanded use cases are identified. Scenarios for such steps

are specified. A scenario is a series of declarative sentences that describes how the objects

interact with each other to carry out a non trivial step.

 The input of this step is the expanded use cases for the current iteration and the information

collected in the last step. The output of this step is a list of scenario descriptions.

Step 3. Constructing scenario tables

 In this step, a tabular representation for each scenario, called a scenario table, is produced as an

aid to sequence diagram construction.

 The input of this step is the list of scenario descriptions. The output of this step is a set of

scenario tables.

Step 4. Deriving sequence diagrams from scenario tables.

 In this step, the scenario descriptions or scenario tables are converted into UML objects are

determined.

 The input of this step is the scenario descriptions or scenario tables, the design class diagram

produced in previous iterations, and the domain model.

 The output of this step is a set of sequence diagrams.

Step 5. Reviewing the object interaction model.

 In this step, the object interaction models are reviewed and revised for consistency,

completeness, and correctness.

 The sequence diagrams are then used to derive the classes to be implemented.

 Also derived are attributes and operations of the classes, and dependency relationships between

the classes. The results are depicted in a UML class diagram, called the design class diagram

(DCD). The DCD serves as the design blueprint for implementation and testing.

https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/object_interaction_modeling.html#wwID0EPM46
https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/object_interaction_modeling.html#wwID0EPM46

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:
David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:216-246

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Applying Responsibility

Introduction : (Maximum 5 sentences) :

 Design patterns are abstractions of proven design solutions to commonly encountered design

problems.

 The controller, expert, and creator patterns are applicable to almost all object oriented systems.

 It will discuss relevant software design principles to help understand what is considered a good

design.

 In particular, it will discuss problems associated with some of the commonly seen design

sequence diagrams.

 To solve these problems, several design patterns are introduced and how to apply these patterns

to improve the design is illustrated.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Object Interaction Modeling

 UML

 Use Case

 Agile Principles

Detailed content of the Lecture:

 Object interaction modeling (OIM), a basic methodology because it does not take into account

the various software design principles.

 This is done on purpose to make the steps easy to understand and easy to follow.

WHAT ARE DESIGN PATTERNS?

 Human beings have used patterns for: II long time. For example, farmers have used cloud

patterns to predict weather, and stock investors use chart patterns to predict price movements of

stocks and mutual funds.

L
LECTURE HANDOUTS

II/IV CSE

 The architectural design patterns were first studied by Christopher Alexandra, who discovered

that buildings that can withstand natural disasters have something in common.

 They all exhibit a set of design Ideas, which he formulated as design patterns.

 Design patterns are abstractions of proven design solutions to commonly encountered design

problems.

 First, a pattern is a design abstraction, as opposed to a concrete design.

 This enables a pattern to solve many similar design problems. Each solution is an instance of

the pattern.

 Each pattern is also a design solution; it solves a design problem or a class of similar design

problems.

 Tie design problem is unique to the pattern.

 A pattern is also proven design solution-, that is, its effectiveness is established by practical

applications, not claimed.

 Finally, a. pattern solves a commonly encountered design problem and hence, it can be applied

again and again to solve many similar design problems 10 a Wide variety of applications. .

 The software engineering community recognized the idea and began tile R&D in software

design patterns in the I980s.

 To date, the most well-known and influential collection of software design patterns remains the

23 so-called Gang of Four (GoF) patterns.

 These patterns are called Gang of Four patterns because the book collecting them has four

authors.

 Each pattern has a name, comprised of an abstraction of the design problem and the design

solution, for example, the singleton pattern solves the following design problem: "How does

one design a class that has at most one globally accessible instance.

 This design problem is common in many practical applications.

 For example, a system needs only one system configuration object and many components need

configuration information.

 Therefore, it is desirable to make it globally' accessible system log file and the catalog of a

library are other applications of singleton.

 A UML class diagram that describes the pattern and Figure shows an Implementation in Java.

 The Subject class is the application class that should have at most one globally accessible

instance, for example, the System Configuration, the System Log or the Library Catalog class.

 It has a private instance of its own type.

 This instance is initially null.

 The Subject class has a private constructor.

 This ensures that ether objects cannot create an instance of the Subject class.

 The getInstance () function ensures that at most one instance is created. It allows other objects

access to the single instance globally through static calls.

 As Illustrated above, patterns are often described using class diagrams and sometimes also

sequence diagrams.

 The class diagram specifies the participants, their roles and responsibilities, and how they relate

to each other.

 The sequence diagram describes how the participants interact with each other to solve the

design problem. UML notes are commonly used to provide additional information.

WHY DESIGN PATTERNS?

 Patterns are proven design solutions to commonly encountered design problems.

 In other words, patterns are reusable software elements. Patterns can be combined to solve large

complex design problems.

 In addition, patterns offer a number of benefits.

 First, patterns improve team member communication because the pattern names effectively

convey the design problems and solutions. Improved communication leads to improvement in

teamwork and elevates team moral.

 Many patterns implement software design principles. Therefore, patterns improve the structure

and behavior of software systems.

 Components designed and implemented with patterns are easy to understand, test, and maintain.

Patterns make reusable designs.

 Successful reuse of well-designed and well-tested software components improves software

productivity and software quality.

 Many experiences indicate that the use of design patterns significantly enhances the

development team's ability to tackle complex design problems.

 Patterns empower less-experienced developers because they can apply patterns to produce high-

quality software. In summary, patterns improve software productivity and software quality, and

reduce software cost and time to market.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:251-273

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Assignment patterns : Specification

Introduction : (Maximum 5 sentences) :

 Patterns are proven design solutions to commonly encountered design problems.

 In other words, patterns are reusable software elements.

 Patterns can be combined to solve large complex design problems. In addition, patterns offer a

number of benefits.

 Design patterns are abstractions of proven design solutions to commonly encountered design

problems.

 The controller, expert, and creator patterns are applicable to almost all object oriented systems.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Design patterns

 UML Diagram

 Creator Pattern

 The Domain model

Detailed content of the Lecture:

 The Gang of Four (GoF) patterns are situation-specific patterns, meaning that each pattern

solves a specific class of design problem.

 For example, there are many applications of the singleton pattern.

 In addition, two or more patterns can be combined in an infinite number of ways to solve

countless design problems.

 The GoF patterns are classified into three categories-that is creational patterns, structural

patterns, and behavioral patterns, Creational patterns are useful for constructing complex, or

special objects.

 For example, how to construct or initialize a complex class structure that involves different

L-

 LECTURE HANDOUTS

II/IV CSE

classes and complex relationships between the classes, Structural patterns are useful for solving

structural design problems.

 An example is how to represent a complex class structure such as a block diagram. Behavioral

patterns are used to solve behavioral or algorithmic design problems.

 Examples are how to schedule the execution of operations, how to process events, and how to

perform analysis algorithms on elements of a complex class structure.

 Another set of well-known software design patterns is the General Responsibility- Assignment

Software Patterns (GRASP), published by Craig Lannan.

 Unlike GoF patterns, GRASP patterns are general responsibility-assignment patterns.

 General, because they can be applied to design almost every software system.

 Responsibility-assignment, because they address an important object-oriented design problem.

 That is, which object should be assigned a given responsibility so that the resulting design will

exhibit properties advocated by software design principles.

 GRASP patterns are the controller, expert, and creator patterns.

PATIERN SPECIFICATION

 A pattern specification is a structured description of a Pattern to facilitate understanding and

application of the pattern.

 For example, below Figure shows the specification of the singleton pattern.

 A pattern specification describes the important or useful aspects of a pattern.

Name and type:

 These specify the name and the type of the pattern. The pattern type indicates the family of the

pattern. For example, GoF, GRASP, or other type of patterns

 GoF patterns are further divided into creational, structural, and behavioral patterns.

Specification :

 This section specifies the design problem and design solution of the pattern.

Design:

 This section describes the structural design and the behavioral design of the pattern. A UML

class diagram is used to describe the structural design. The behavioral design is described by a

sequence diagram or texts.

 In addition, the classes are described in terms of their roles and their responsibilities in solving

the design problem.

Benefits and liabilities:

 These describe the advantages of applying the pattern, and any potential problems.

Guidelines:

 Sometimes useful information for applying the pattern is provided.

Related patterns :

 Patterns that are related in various ways are described here.

Uses :

 General or specific applications of the pattern may be described.

Video Content / Details of website for further learning (if any):

https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns

https://www.youtube.com/watch?v=ViT0o4JSR7c

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:252-254

 Course Faculty

 Verified by HOD

https://whatis.techtarget.com/definition/GRASP-General-Responsibility-Assignment-Software-Patterns
https://www.youtube.com/watch?v=ViT0o4JSR7c

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture : Controller-Expert Pattern

Introduction : (Maximum 5 sentences) :

 The controller pattern is used with almost every use case.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 Creator

 Controller Pattern

 Creator Pattern

 The Domain model

 Bloated controller

Detailed content of the Lecture:

THE CONTROLLER PATTERN

 It addresses the problem of how to design software systems that allow their user interfaces and

business objects to change independently without affecting one another.

 Another design problem addressed by the pattern is how to support multiple user interfaces

such as a desktop user interface, a web-based interface, or others. The controller pattern is a

special: case of the well-known model-view-controller (MVC) pattern. That is, it is an

application of the MVC to the handling of actor requests of a use case.

What Is a Controller?

 The Presentation and the business objects are now decoupled.

 As a consequence, changes to one will not affect the other. Supporting multiple types of

presentation is easy.

 To add a new type of presentation, one need only to design and implement the new presentation

and have it-deliver the actor request to the controller.

 This greatly facilitates software evolution or enhancement maintenance. The responsibility to

L-
LECTURE HANDOUTS

II/IV CSE

handle an actor request 'is removed from the presentation and assigned to the controller.

Applying the Controller Pattern

 To apply the controller pattern to the design in Figure IOJ, one simply introduces a controller in

between the presentation and the business objects.

 In addition, the business logic is removed from the presentation and assigned to the controller.

Notice that the Checkout GUI object now is only responsible for presenting information patron.

 The responsibility to process the checkout request is assigned to the Checkout Controller

object, which interacts with the DBMgr and the other business objects to fulfill the

responsibility.

 It is instructional to briefly discuss the design in Figure with respect to -the design principles

presented.

 The discussion is aimed to illustrate how to evaluate a design using software design principles.

In addition, the discussion helps the student understand the design principles.

 These are required attributes of a software architect.

1. Design for Change:

 Changes to the business logic or business objects will have little impact to the presentation,

provided that the interface and interaction behavior of the Checkout Controller are not

changed.

2. Separation of Concerns:

 Separation of concerns is well supported by the design.

 The Checkout object now deals with only the presentation aspect while the Checkout

Controller is responsible for processing the Checkout Document use case.

 In the previous design, both concerns are assigned to the Checkout GUL

3. High Cohesion:

 Previously the responsibilities of presenting information to the patron and processing the

Checkout Document use case are assigned to the Checkouts GUL.

 But these two sets of functionality do not belong to a single core function. Therefore, the

cohesion of the previous design is surely not functional cohesion.

 In the new design, both the CheckoutGUI and the Checkout Controller exhibit functional

cohesion.

4. Designing "Stupid Objects."

 The new design exhibits the principle of keep it simple and stupid, especially, designing

"stupid objects." Previously, the Checkout knew how to present information to the patron as

well as how to process the business logic.

 In the improved design, each of the Checkout GUI and the Checkout Controller knows only

one thing, presenting information and processing the Checkout Document use case,

respectively.

Types of Controller

There are two types of controllers:

 (I) use Case Controller, and

 (2) Facade Controller.

 A use case controller is responsible for handling all actor requests that are associated with a use

case.

 The-controller in Figure was intended to be a use case controller for the Checkout use case.

 This is indicated by the name of the controller-that is, "Checkout Controller;" which implies

that the controller is for the Checkout use case.

 If new requirements are added and new use cases are introduced, it only needs to add the

corresponding use case controllers.

 Changes to existing requirements are limited to changing the relevant use case controllers and

business objects.

 Information hiding is supported because changes to the business objects are shielded from the

presentation, provided that the interfaces 'Of the controllers are kept stable.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:
David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:254-273

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Creator patterns

Introduction : (Maximum 5 sentences) :

 Creator is a GRASP Pattern which helps to decide which class should be responsible for

creating a new instance of a class.

 Object creation is an important process, and it is useful to have a principle in deciding who

should create an instance of a class.

 These design patterns provide a way to create objects while hiding the creation logic, rather

than instantiating objects directly using new operator.

 This gives program more flexibility in deciding which objects need to be created for a given use

case.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Design Patterns

 Controller Pattern

 Assignment Pattern

 GUI

 Class and Objects

Detailed content of the Lecture:

What Is a Creator?

 Object creation is a common activity of an object-oriented system.

 Therefore, who should be assigned the responsibility to create an object deserves certain

guidance. The creator pattern serves this purpose and is illustrated in below diagram.

L-
LECTURE HANDOUTS

II/IV CSE

That is, the creator pattern suggests that the responsibility to create an object of Class B should

be assigned to an object of Class A if one of the following holds:

ClassA is an aggregation of Class B.

 Since objects of Class A consist of objects of Class B, it is simple and straightforward to assign

the creation responsibility to Class A. Because the dependency of Class A on Class B already

exists, the call to the constructor of Class B does not introduce additional dependency. Reuse of

 Class A is easier than letting another class to create objects of Class R because this requires that

the class be reused.

An object of ClassA contains objects of Class B.

 The fact that objects of Class A contain objects of Class B implies that the former may need to

use or update the latter frequently.

 If this is the case, then letting objects of Class A create objects of Class B may result in a

simple and easy-to-understand design.

 However, there are exceptions. For example, there are many cases where a container class is

used only to store the elements, which are created by other classes.

An object of ClassA records objects of Class B.

 There are many cases where an object of Class A maintains objects of Class B.

 For example, a patient's medical file records the lab tests for the patient, the medical file check-

in and checkout log records the check-in and checkout activities, and a purchase history records

the details of each purchase item.

 In these and other similar cases, it may be simpler and more convenient to pass the required

parameters to the medical file, the' log, and the purchase history, respectively, and let them

create the elements.

 An object of ClassA closely uses objects of ClassB

 There are many cases where an object of Class A closely uses objects of Class.

 These include, among others, an aggregate, container, or recording class that also retrieves or

updates its elements frequently.

 An example is an inventory bookkeeper, which needs to check and update the inventory records

frequently.

 Letting the inventory-bookkeeper create the inventory records simplifies the design and makes

it easy to understand and reuse.

An object of Class A has the information to create objects of Class B.

 In many cases, input parameters must be passed to the constructor of a class.

 In such cases, it may be more convenient to let the object that has the input parameters to call

the constructor if this does not deteriorate the cohesion of the creator.

 In diagram, the constructor of the Loan class requires a patron object and a document object.

 The checkout controller has these. Creating a Loan object is the responsibility of the checkout

controller. Therefore, it is selected to create the Loan object.

Benefits of the Creator Pattern

 The creator pattern results in low coupling and better software reusability.

 The dependency of the creator on the object to be created already exists.

 Therefore, the creator pattern does not introduce additional dependency-that is, it results in low

coupling.

 This also facilitates the reuse of the creator because the creator creates its dependent objects-in

other words, there is no need to reuse anything else to create the dependent objects.

When Does One Apply the Creator Pattern?

 The stages to apply the creator pattern are similar to the expert pattern.

 That is, depending on the development context, the pattern can be applied when the designer

writes or modifies the use case scenario, or during the construction of the sequence diagram.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:270-274

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: Deriving a Design Class Diagram

Introduction : (Maximum 5 sentences) :

 A design class diagram (DCD) is an UMLClass diagram, derived from the behavioral

models and the domain model. It serves as a design blueprint for test-driven development,

integration testing, and maintenance.

 Package diagrams are useful for organizing and managing the Classes of a large DCD

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 UMLClass diagram

 Class diagram

 Package diagrams

 Behavioral model

 Domain Modeling

Introduction

 With the completion of interaction diagrams for use-case realizations, it is possible to identify

the specification for the software classes (and interfaces) that participate in the software

solution, and annotate them with design details, such as methods.

When to Create DCDs

 DCDs are usually created in parallel with interaction diagrams.

 Many classes, method names and relationships may be sketched out very early in design by

applying responsibility assignment patterns, prior to the drawing of interaction diagrams.

 It is possible and desirable to do a little interaction diagramming, then update the DCDs, then

extend the interaction diagrams some more, and so on.

Example DCD

 Here is an example of DCD with Register and Sale.

L-
LECTURE HANDOUTS

II/IV CSE

 The diagram consists of the methods of each class, attribute type information, and attribute

visibility and navigation between objects along with the basic associations and attributes, which

are created during Domain Modeling.

Terminology related to DCD

A design class diagram (DOD) illustrates the specifications for software classes and interfaces

(for example, Java interfaces) in an application. Typical information includes;

 classes, associations and attributes

 interfaces, with their operations and constants

 methods

 attribute type information

 navigability

 dependencies

In contrast to conceptual classes in the Domain Model, design classes in the DCDs show definitions for

software classes rather than real-world concepts.

Steps in creating DCD

 Identify software classes

 Illustrate them by Class Diagrams

 Add Method names

 Add Type information

 Add Association and Navigability

 Add Dependency relationship

Design Class Diagram Review Checklist

To ensure quality, the DCD must be reviewed by the team members using the following review

checklist:

1. Ensure that the classes, attributes, operations, parameter types, return types, and relationships in the

DCD are derived correctly according to the steps.

2. Does the DCD contain unnecessary classes, operations, .or relationships?

3. Does the naming of the classes, attributes, operations, and parameters communicate concisely the

intended functionality and is it easy to understand?

4. Does the DCD clearly indicate the design patterns used? (This helps the programmer in the

implementation phase.)

5. Compute metrics such as fan-in. fan-out, class size, depth in inheritance tree, and coupling between

classes and identify potential problems.

ORGANIZE CLASSES WITH PACKAGE DIAGRAM

 The DCD may contain numerous classes, making it difficult to understand.

 In this case, UML package diagram is useful for organizing the classes into logical partitions

called packages.

 The packages may be organized in different ways.

Commonly used organizations and their combination are:

1. Functional subsystem organization.

2. Architectural style organization.

3. Hybrid organization.

 The functional subsystem organization partitions the classes according to the functional

subsystems of the software system.

 This results in packages that correspond to the functional subsystems of the software system.

 For example, the functional subsystems of a library information system include circulation

subsystem, cataloguing subsystem, purchasing subsystem, interlibrary loan subsystem, and user

assistance subsystem.

 Besides these, the system also has a persistence storage or database subsystem. Using this

approach, six corresponding packages are defined.

 In addition to these packages, there is a package that contains classes belonging to the library

information, system as a whole including Main GUI, Login and Logout GUl, and

Configuration.

Video Content / Details of website for further learning (if any):

http://roshanchi.tripod.com/Documents/Study/OOAD/Notes/DCD.pdf

https://courses.cs.washington.edu/courses/cse403/11sp/lectures/lecture08-uml1.pdf

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:276-292

 Course Faculty

 Verified by HOD

http://roshanchi.tripod.com/Documents/Study/OOAD/Notes/DCD.pdf
https://courses.cs.washington.edu/courses/cse403/11sp/lectures/lecture08-uml1.pdf

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : III Date of Lecture:

Topic of Lecture: User Interface Design GUI widgets-process

Introduction : (Maximum 5 sentences) :

 User interface design is concerned with the design of the look and feel of the user interfaces.

 The design for change, separation of concerns, information-hiding, high-cohesion, low-coupling.

 Keep-it-simple-and-stupid software design principles should be applied during user interface design.

 The user interface of a software system is the means and mechanism through which a user interacts

with the system to carry out business tasks.

 The users use the interface to request system services, provide user input, and receive system

responses.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Graphical user interface

 Interface

 User Interface (UI) Design

 Widgets

Detailed content of the Lecture:

USER INTERFACE DESIGN :

 Several decades ago the user interface was extremely primitive.

 To input a program and feed data to it, one used a special typewriter to punch holes on a black tape,

although others used punch cards.

 The punch tape was then mounted on an optical device, which read the tape and sent a bit stream to

the computer.

 The output devices were the console typewriter and a line printer. Batch processing was the dominant

mode of computing.

 In terms of today's standard, such a user interface is not user friendly at all, but at that time, it was

L-
LECTURE HANDOUTS

II/IV CSE

luxury to use a computer; therefore, nobody complained about it.

 Today's software systems offer graphical user interfaces (GUIs) and interactive mode of processing,

although text-based interfaces are still used, Characteristics of GUls include:

Window-based multitasking. Users can open multiple windows to work on and keep track of different

tasks at the same time.

Easy to learn and use: Proper design of the look and feel using graphical widgets makes the user interface

intuitive and easy to learn and use.

Multimedia presentation: The ability to use graphics, sound animation, and movies greatly enhances

information presentation and communication.

WHY IS USER INTERFACE DESIGN IMPORTANT?

 Businesses and government organizations invest in computer hardware and software with the

expectation to increase productivity and quality of service while lowering operating costs.

 The return on investment (ROI) depends on the design of the user interface because it is the sale

communication channel between the user and the system.

 Through the user interface, users utilize the computer system to carry out business tasks. If the user

interface is easy to use, then the user's productivity and work quality are increased. These in turn

reduce operating costs.

 On the other hand, if the user interface is difficult to understand and use, then the users would avoid

using the system, or their job error rates would be higher.

 Thus, the ROI is low. Unfortunately, the importance of user interface design is often

underestimated.

 This results in products that offer excellent functionality and performance but do not sell because of

poor user interfaces.

Graphical user interfaces widgets

 Graphical user interfaces are composed of GUI widgets, or simply widgets, such as windows, dialog

boxes, menus, menu items, buttons and .many others.

 Different widgets serve different purposes, and proper use of the widgets is important.

 To save space and for simplicity, this section presents only widgets that are widely used and those

used by user interfaces of stand-alone applications.

 Each platform has published its own user interface (UI) guidelines. These documents describe the

design rules for software GUIs.

Container widgets

 Container widgets include window, dialog box, scroll pane, tabbed pane, and layered pane, among

others. Windows are often used to represent the main display or main window of a stand-alone

application or its subsystems.

 When the software system is started the main window is created and exists along with the

application.

 It can be displayed anywhere in the user's desktop. Closing the window terminates the application

and exiting the application closes the window.

 In Java, windows are decorated by frames to provide title bars, borders, and other window

management buttons and menus.

 From a user's point of view, a window and a frame are not different and hence, these are not

distinguished in this chapter.

 A dialog box is a window that is launched by another window to engage the user in a dialog.

Closing a dialog box does not terminate the application software.

USER INTERFACE GUIDELINES

 UI guidelines are documents describing the rules for software GUI designs and operations.

Applying these guidelines allows software developers and UI designers to realize software

consistency within a platform.

 Many UI guidelines have been published, e.g., Microsoft Windows User Experience Interaction

Guidelines, Mac OS X Human Interface Guidelines, and GNOME Human Interface Guidelines.

International Conference Information Systems 2013297

 There are several benefits of adapting UI guidelines to GUIs.

 Applying UI guidelines allows consistent operations and designs of GUIs to be realized, which

improves operational consistency between software products within a platform.

 A user can apply his or her experience of one software product to other software products without

learning new operations, which increases operating efficiency.

 Additionally, software manuals in simple terms benefit both users and developers.

 Users can use the software products without reading the manual, while developers can decrease

costs and burdens of preparing manuals because the operations are similar to other software

products.

 Hence, using UI guidelines to make layout decisions simultaneously improves usability and

reduces development costs.

USER INTERFACE DESlGN PROCESS :

 Below Figure shows the user interface design process.

 The input to the process is the expanded use cases produced in the current increment.

 The output is the user interface design.

 The steps of the process are outlined as follows and detailed in subsequent sections.

Step 1. Identifying major system displays.

 In this step, the system displays, user input and user actions are identified from the expanded use

cases produced in the current iteration. These form the basis for the design of the look and feel in

the next two steps.

Step 2. Producing a draft design of the windows and dialog boxes.

 In this step, a draft layout design of the windows and dialog boxes corresponding to the system

displays is produced. This step designs the "look" of the user interface.

Step 3. Specifying interaction behavior.

 In this step, a state diagram is produced to specify the navigation relationships between the windows

and dialog boxes. This step designs the "feel" of the user interface.

Step 4. Constructing a user interface prototype.

 This step is optional and produces a user interface prototype to show the look and feel as designed

in the last two steps.

Step 5. Evaluating the design with users.

 In this step, the user interface design, and possibly the prototype, is presented to a group of user

representatives to solicit their feedback, which is used to improve the design.

Video Content / Details of website for further learning (if any):

https://www.researchgate.net/publication/293090206_GUI_generation_based_on_user_interface_guidelines

https://www.interaction-design.org/literature/topics/ui-design

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:293-314

 Course Faculty

 Verified by HOD

https://www.researchgate.net/publication/293090206_GUI_generation_based_on_user_interface_guidelines

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: Implementation Considerations

Introduction : (Maximum 5 sentences) :

 Everyone in the team should follow the same coding standards.

 Test-driven development, pair programming, and code review improve the quality of the code.

 Classes should be implemented according to their dependencies to reduce the need for test

stubs.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

Coding Standards

Coding conventions

Organizing the implementation Artifacts

Generating code from design

Pair Programming

Detailed content of the Lecture:

Coding Standards

Coding standards usually include the following major items:

File header.

 Many companies' coding standards require a file header at the beginning of each program file.

It specifies the file location. version number, author, project, update history, and other useful

information.

 Description of classes.

 Many companies also require a functional description for each class. It includes:

 a. Purpose-a statement of the purpose of the class.

 b. Description of methods--a brief description of the purpose of each method, the

parameters, returns type and other input and output such as files. Database tables and text fields

accessed and updated by the method, The list should not include the ordinary get and set functions.

 Description of fields

 A brief description of each field including the name of the field, data type, range of values,

initialization requirement, and values of significance.

Coding conventions include:

Naming conventions.

 These conventions specify rules for naming packages, modules, paths, Files, classes, attributes,

functions, constants and the like. Naming conventions should help program understanding and

maintenance.

Formatting conventions.

L-
LECTURE HANDOUTS

II/IV CSE

 Formatting conventions specify formatting rules used to arrange program statements. These

include line break, indentation, alignment and spacing

In-code commend conventions.

 If it is written properly, in-code comments facilitate program understanding and maintenance.

ORGANIZING THE IMPLEMENTATION ARTIFACTS

Architectural-style organization.

 This approach organizes the classes accordingto the building blocks of the software

architecture. It Shows the correspondence between the N-tier architecture and the packages forthe

library information system discussed

Functional subsystem organization.

 This approach organizes the classes according to the bnctional subsystems of the software

system.

Hybrid organization.
 This approach combines the architectural-style organization and the functional subsystem

organization. Two approaches exist: the architectural-style functional subsystem organization and the

functional subsystem architectural-style organization.

GENERATING CODE FROM DESIGN

From Sequence Diagram to Method Code Skeleton

 Sequence diagrams model the behavioral aspect of objects. The Long narrow rectangle under

the Checkout Controller object indicates the execution of the checkout (callNo: String):String method

of the Checkout Controller.

 The arrow lines that go out from this rectangle represent calls to functions of other objects. The

large box with "alt" at the upper-left corner implies a selection or if-then-else statement.

Implementing Association Relationship

One-to-one association.

 A one-to-one association between class A and class B is implemented by A holding a reference

to B if A calls a function of B, and/or by B holding a reference to A if B calls a function of A.

One-to-many association.

 A one-to-many association between class A and class B is implemented by A holding a

collection of references to B if A calls the functions of B instances, or by B holding a reference to A if

instances of B call a function of A.

Many-to-many association.

 A many-to-many association between class A and class B is similarly implemented by a

collection of references from A to B, and vice versa.

PAIR PROGRAMMING

 Pair programming is an emerging programming technique that requires two people to program

together at one machine, with one keyboard and one mouse.

 The two programmers play two different roles but both work on the same program

simultaneously.

 While the one with the keyboard and the mouse focuses on the best way to implement the

functionality the other reviews the program as it is being typed. For convenience, these two roles are

referred to as the writer and the reviewer.

TEST-DRIVEN DEVELOPMENT

WORKFLOW

 Prepare for Test Driven Development

 Write Tests

 Implement and Test the Features

 Repeat until all features are correctly implemented

 Accomplish test coverage

Merits of Test-Driven Development

 TDD requires the programmer to understand the functionality and implement testable features.

Testability is an important attribute of software, especially software requirements.

 TDD constantly validates the implementation with respect to the tests. It helps the team detect

and remove defects. As a result, TOO produces high-quality code.

 TDD focuses on the desired functionality first but also addresses the other quality aspects such

as program structure and readability through refactoring.

 TDD facilitates debugging because incremental implementation of the features makes it easy to

locate and fix errors.

Potential Problems

 The test cases may be too weak to ensure that the program indeed correctly implements the

desired functionality.

 The test cases may be too focused on the main functionality and overlook other cases that may

cause the program to crash or behave incorrectly.

 The test cases or test scripts are themselves programs. If they are not written in accordance to

coding standards and conventions then the maintenance of these programs is a nightmare.

Video Content / Details of website for further learning (if any):

https://slideplayer.com/slide/9295789/

https://slideplayer.com/slide/6420428/

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page NO:450-467

Journals

https://www.researchgate.net/publication/200484093_

https://www.clutejournals.com/index.php/RBIS/article/download/4482/4570

 Course Faculty

 Verified by HOD

https://slideplayer.com/slide/9295789/
https://slideplayer.com/slide/6420428/
https://www.researchgate.net/publication/200484093_
https://www.clutejournals.com/index.php/RBIS/article/download/4482/4570

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: SOFTWARE QUALITY AND METRICS

Introduction : (Maximum 5 sentences) :

 Software quality assurance encompasses a set of activities to ensure that the software under

development or modification will meet functional and quality requirements.

 Software quality assurance activities are life-cycle activities.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Benefits of Software quality Assurance

 Quality Measurements and Metrics

 Usefulness Of Quality Measurements And Metrics

 Conventional Quality Metrics

Detailed content of the Lecture:

BENEFITS OF SOFTWARE QUALITY ASSURANCE

 The importance of software quality can never be overstated. Our society depends on software to

perform almost everything.

 Software bugs cost billions of dollars owing to property damages, productivity losses, bodily

injuries, and loss of lives.

 One of the worst software bugs of all time is the Therac-25 bug, which caused the radiation.

 Qualitative formulation as such is ambiguous because different persons can interpret the same

requirement-differently.

QUALITY MEASUREMENTS AND METRICS

 Software quality attributes state the important aspects of software. However, they are at most

qualitative assessments of the software. The qualitative nature allows subjective evaluations.

 A software measurement is an objective and quantitative assessment of software attribute.

 Software metric is a standard software measurement.

 An indicator is a measurement or metric value, believed to have a significant implication.

USEFULNESS OF QUALITY MEASUREMENTS AND METRICS

 Definition and use of Indicators

 Directing valuable resources to critical areas

 Quantitative Comparison of similar projects and systems

 Quantitative assessment of improvement

 Quantitative assessment of Technology

 Quantitative assessment of process improvement

L-
LECTURE HANDOUTS

II/IV CSE

 Conventional Quality Metrics

Requirements Metrics

f(state, stimulus) (state, response)

Design Metrics

The module design complexity mdc(M) is calculated by: .

 Mdc[M] == d+ I

That is, the integration complexity is the number of atomic binary decisions plus one. Using this

formula to compute the integration complexity for the MO module results in

 SI(MO) = Nabd + 1 = 3 + 1 = 4

Implementation and System metrics

The reliability metric uses the mean time between failures (MTBF) as the measurement. It is calculated

as the sum of the mean time to failure (MTTF) and the mean time to repair (MTTR) of the system.

That is, reliability is:

 MTBF = MTIF + MTTR

Object-Oriented Quality Metrics

 The object-oriented paradigm introduces a number of powerful features such as encapsulation,

inheritance, polymorphism, and dynamic binding. Accordingly. there are a number of object-oriented

measurements and metrics:

Weighted Methods per Class (WMC).

 The WMC for a class C is the sum of the complexity metrics of the methods of a class. It is

computed as

 WMC(C) = Cml + C m 2 +-... +c mn

where i = 1,2, ... n, are - the complexity metrics of the methods of C.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=M7ZVcQOSVF4

https://www.youtube.com/watch?v=5_cTi5xBlYg

https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:470-482

Journals:

https://ieeexplore.ieee.org/document/5010196

https://www.springer.com/journal/11219

 Course Faculty

 Verified by HOD

https://www.youtube.com/watch?v=M7ZVcQOSVF4
https://www.youtube.com/watch?v=5_cTi5xBlYg
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://ieeexplore.ieee.org/document/5010196
https://www.springer.com/journal/11219

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IVDate of Lecture:

Topic of Lecture:Software Verificationand Validation Techniques

Introduction : (Maximum 5 sentences)

 Verification and validation are SQA activities to ensure that the software process and product

confirm to established quality requirements.

 Software verification and validation are important because software is used inall sectors of our

society.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Inspection

 Walkthrough

 Peer Review

 Verification and Validation Life Cycle

Detailed content of the Lecture:

Inspection

 Inspection checks the product against a list of common errors, anomalies and non-Compliances

to standards and conventions. It is similar to car inspection that is required in many countries.

• Use of uninitialized variables objects, references, or pointers.

• Calling the wrong polymorphic function.

• Incorrect function invocation for example, incorrect parameters are passed to the function or the

parameters are misplaced.

• Non terminating loops or incorrect loop termination conditions.

• Mismatch in array dimensions, causing an array index out-of-bounds exception.

• Uncaught/unhandled runtime exceptions.

 Incorrect business logic

 Inconsistent business logic

 Incomplete business logic

WALKTHROUGH

 Walkthrough manually executes the product using simple test data. Usually, the developer who

produces the product leads the team to perform the walkthrough The team checks the product step by

step while reading aloud.

 Applicability

 Effectiveness

 Participants

 Procedure

1. A product overview is presented to the participants if desired.

2. The developer loudly reads through the product and provides necessary explanations.

The other team members ask questions and raise doubts.

L-
LECTURE HANDOUTS

II/IV CSE

3. The developer fixes the problems, produces a summary list, and obtains approval from

the participants.

PEER REVIEW

 In peer review, the product is reviewed by peers, who are guided by a list of review questions,

designed to qualitatively assess aspects of the product.

 The reviewer’s assessments of the product may vary drastically because the assessments are

heavily influenced by the reviewer's knowledge, experience, background, and criticality.

VERIFICATION AND VALIDATION IN THE LIFE CYCLE

Verification and Validation in the Requirements Phase

Verification and validation in the requirements phase aims at detecting errors and anomalies in the

requirements specification and the analysis models including the domain model and use case diagrams.

 Completeness

 Consistency

 Unambiguity

 Traceability

 Feasibility

Verification and Validation in the Design Phase

 Checking the correctness of the design is a validation activity to ensure that the design

corresponds to the real needs of the customer.

 If the requirements and constraints correctly and adequately specify the real needs of the

customer, then assessing the satisfiability of the design with respect to the requirements and constraints

is a verification approach to ensure that the design corresponds the customer's real needs.

Verification and Validation in the implementation Phase

Inspection and peer review in the implementation phase are aimed to ensure the following:

 • The implemented interfaces and interaction behavior between the various components are

consistent

 • The source code satisfies the organization's coding standards and quality, metrics such as

information hiding high cohesion low coupling, and acceptable cyclomatic complexity, for example

not to exceed 10.

 • The programming constructs of the implementation language are used properly.

Video Content / Details of website for further learning (if any):

Can be added as link

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/

https://www.youtube.com/watch?v=qxitgylm1EU

Important Books/Journals for further learning including the page nos.:

David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013Page No:483-490

Jorunals:

https://www.springer.com/journal/11219/updates/17193268

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/
https://www.youtube.com/watch?v=qxitgylm1EU
https://www.springer.com/journal/11219/updates/17193268

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IVDate of Lecture:

Topic of Lecture:SQA Functions

Introduction : (Maximum 5 sentences)

 The overall objective of SQA is to ensure that the software development process is carried out

as required, and the software system meets the requirements and quality standards.

 SQA, as an area of the software engineering discipline, is responsible for the research,

development and validation of cost-effective processes, methods, and tools to accomplish these

goals.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Definition of Process and Standards

 Definition of Process and Methodology

 Definition of Metrics and Indicators

 Quality Management

 Process Improvement:

Detailed content of the Lecture:

Definition of Process and Standards

 The definition of processes and standards function is responsible for developing and defining a

framework for ensuring software quality for the whole organization.

• Definition of software development, and quality management processes and methodologies.

• Definition of SQA standards, procedures, and guidelines for carrying out the SQA activities

during the life cycle.

• Definition of quality metrics and indicators for 'quality measurement and assessment.

Definition of Process and Methodology

 The importance of a software development process and a development methodology is

discussed in Chapter 2, where several software process models are described. A software development

methodology implements a software process.

Definition of SQA Standards and Procedures

 Another responsibility of the SQA component IS defining quality standards and procedures for

all software projects to comply. These include process standards and product standards.

 The process standards define the requirements on the development processes and

methodologies.

Definition of Metrics and Indicators

• Software quality assurance requires measurements so that quality can be assessed. Metrics and

indicators are needed for measuring and assessing software quality.

• This function-of the SQA component identifies and defines the metrics to be used to measure

the process and product aspects of the projects in the organization.

L-

LECTURE HANDOUTS

II/IV CSE

Quality Management

 The definition of processes and standards function defines the SQA framework for the

organization.

 It consists of two activities:

1. Quality planning. This activity takes place at the beginning of each project. It produces a

quality plan for the specific project.

• Purpose

• Management

• Standards and Conventions

• Review and Audits

• Configuration Management

• Process Methodologies, tools and techniques

• Metrics and indicators

2. Quality control. This activity takes place throughout the entire project. It monitors the

execution of the quality plan as well as modifies the quality plan to respond to changes in the

reality.

SQA Control

• This SQA function ensures that the SQA plan is carried out correctly. SQA training could be

one of the important activities of this function .

• The training is aimed to educate the developers of the importance of SQA, the organization's

SQA standards and procedures, the available SQA tools as well as how to use the tools to

perform SQA activities.

Process Improvement:

• Defining metrics and data collection methods.

• Collecting data for measuring the process

• Calculating the metrics and indicators.

• Recommending improvement actions.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/software_quality_management_sqa_components.htm

https://www.youtube.com/watch?v=cCzh9kSiRCo

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page NO:486-504

Journals

http://ijarcsms.com/docs/paper/volume2/issue3/V2I3-0131.pdf

Course Faculty

Verified by HOD

https://www.tutorialspoint.com/software_quality_management_sqa_components.htm
https://www.youtube.com/watch?v=cCzh9kSiRCo
http://ijarcsms.com/docs/paper/volume2/issue3/V2I3-0131.pdf

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: Black Box And White Box Testing

Introduction : (Maximum 5 sentences) :

 This section presents some of the well-known conventional black box testing techniques, which

can be used to test the member functions of a class and provide a basis for learning object-

oriented testing methods.

 Unlike black-box testing techniques, white-box testing derives test cases from the internal

structure or logic of the CUT. Most white-box approaches generate test cases through the

analysis of the source code.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Equivalence Partitioning

 Boundary value analysis

 Cause effect analysis

Detailed content of the Lecture:

CONVENTIONAL BLACK BOX TESTING

 Functional testing derives test cases from the requirements, or functional specification of the

component under test (CUT).

 Functional testing is also referred to as black-box testing because it treats the CUT as a black

box. In illustration, consider a purge function that eliminates duplicate elements from an integer

list.

The input to the purge function is a list of elements, denoted L = A I, A2, ... , An. The output of the

function is a list of elements L' ~ AI', A.2', Am', m <= n.

The output list must not contain duplicate elements.

This can be specified mathematically as:

 (l)(Vi')(Vj'((i', j' <= rz) A (Ai' = Aj') -+ (i' = j'))

This formula facilitates the derivation of test cases.

There are three commonly used black-box testing techniques.

These are

 equivalence partitioning

 boundary value analysis

 cause-effect analysis.

EQUIVALENCE PARTITIONING

 Equivalence partitioning divides the input and output domains into a number of disjoint subsets,

and selects one test case from each of these disjoint subsets.

 The key to equivalence partitioning is to identify an equivalence relation among the elements of

L-
LECTURE HANDOUTS

II/IV CSE

an input domain. An equivalence relation is a reflexive, symmetric, and transitive relation.

BOUNDARY VALUE ANALYSIS

 Equivalence partitioning divides all possible input or output values into equivalence classes and

selects test cases from each of the partitions.

 The boundary value analysis selects test cases at and near the boundaries of the equivalence

classes. Therefore, the two test case generation methods complement each other.

CAUSE-EFFECT ANALYSIS

o Cause-effect analysis is similar to the functional test example described , except that a

decision table is constructed to help the generation of the test cases.

o First, the dependencies between the input variables and the outcome of the CUT are

identified.

o Second, values for the input variables are determined.

o Third a decision table is constructed to show the correspondence between the input

value combinations and the outcome of the CUT.

o Finally, test cases are derived from the rules of the decision table.

CONVENTIONAL WHITE BOX TESTING

Basis Path Testing

 Basis path testing generates test cases to exercise the independent control flow paths, called

basis paths, of the CUT. The basis paths are derived from the CUT's flow graph, which is constructed

using a number of flow graph notations.

Cyclomatic Complexity

 The number of basis paths of the CUT is defined as the cyclomatic complexity of the CUT.lt is

determined in three equivalent ways. That is, either of these three approaches can be used to determine

the cyclomatic complexity:

 1. Number of closed regions plus one. This approach obtains the cyclomatic

complexity by adding one to the number of closed regions in the How graph. In there are three such

regions; therefore, the cyclomatic complex-

 2. Number of nodes and edges. In this approach, the cyclomatic complexity is the

Number of edges minus the number of nodes plus 2. In Figure 20.6(b), there are 14edges and 12 nodes

therefore; the cyclomatic complexity is 14 - 12 + 2 = 4.

 3. Number of atomic binary conditions plus one. The cyclomatic complexity is the

number of atomic binary conditions plus I, there are three atomic binary conditions. Therefore,

thecyc1omatic-complexity is 4. When using this approach, treat each n-ary condition as n - 1 binary

condition.

Flow Graph Test Coverage Criteria

Flow graph-based test coverage criteria are defined as follows, ranging from the weakest to the

strongest-The weakest criterion yields the Lowest confidence on the CUT, while the strongest criterion

provides the highest confidence on the CUT:

1. Node Coverage

2. Edge Coverage

3. Basis path coverage

Testing loops

 All path coverage is practically impossible because many programs contain nested loops that

iterate numerous numbers of times, resulting in countless numbers of paths.

Data Flow Testing

 Data flow testing focuses on the define-use relationships of selected program variables. A

variable is defined if its value is updated at a program location.

 A variable can be used to evaluate a condition or compute a value. These are called predicate

use or p-use, and computation use or C-use, respectively.

Interprocedural Data Flow Testing

 The last section presents test case generation based on data define-use paths within a function.

 This has been called intraprocedural data flow testing. There are many cases in which a variable

is defined in one function and used in another function, resulting in interprocedural data flow

testing.

Interprocedural Data Flow Testing

 The last section presents test case generation based on data define-use paths within a function.

 This has been called intraprocedural data flow testing. There are many cases in which a variable

is defined in one function and used in another function, resulting in interprocedural data flow

testing.

TEST COVERAGE

 The notion of test coverage is mentioned a few times during the presentation of the test

methods in previous sections. It was but defined earlier because the term is somewhat abstract.

Video Content / Details of website for further learning (if any):

https://www.youtube.com/watch?v=Wi75S5TTfQ0

https://www.geeksforgeeks.org/software-engineering-black-box-testing/

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:504-515

Journals:

https://www.researchgate.net/publication/276198111

https://www.ijarcst.com/doc/vol2-issue3/ver.1/nidhi_gupta.pdf

 Course Faculty

 Verified by HOD

https://www.youtube.com/watch?v=Wi75S5TTfQ0
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.researchgate.net/publication/276198111
https://www.ijarcst.com/doc/vol2-issue3/ver.1/nidhi_gupta.pdf

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: OO Software Testing

Introduction : (Maximum 5 sentences)

These techniques are applicable to testing the methods of a class.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

o Use case based Testing

o Object state testing

o Generate test cases

o Testing Class hierarchy

Detailed content of the Lecture:

Use Case-Based Testing

Use case-based testing, as its name suggests, derives test cases from the use case specifications.

Step l. Identify actor input and actor actions.

Step 2. Determine input values.

 Valid Input

 Invalid Input

 Exceptional Cases

Step 3. Generate test cases.

Step 4. Generate concrete tests.

Step 5. Implement and run the tests.

Object State Testing with Class Bench

 Many objects exhibit state-dependent behavior. or state behavior, for short. For example,

pushing an element onto a stack may increment the size of the stack or cause a stack full exception.

The Test Model and Test Coverage

 The Class Bench test model is a finite state machine, where the states represent the states of the

CUT and the transitions represent executions of functions of the CUT.

 Three test coverage criteria can be defined, in ascending order of rigidness:

Node Coverage

Edge Coverage

Path Coverage

Generate Test Cases

 Each test case is a path of the test model; beginning from an initial state and ending at some

state.

Implement and Run the Test Cases

 The next step is to implement the test cases in l Unit and run the test cases using one of the J

Unit test runners.

L-
LECTURE HANDOUTS

II/IV CSE

Using a Test Oracle

 A test oracle is a piece of software that simulates the functionality and behavior of a CUT to

facilitate checking of the test result produced by the CUT.

Testing Class Hierarchy

 Inheritance is a unique feature of object-oriented programs. Testing an inheritance hierarchy

should begin with the root class and work downwards.

 Conventional black-box and white-box test methods can be used to test the functions of a class,

and the Class Bench approach can be applied to testing object stale behavior.

Testing Exception-Handling Capabilities

 Exception handling is an important feature of object-oriented programming. Therefore, the

exception-handling capability of the CUT should be tested.

1. The CUT throws Exceptions.

The CUT does not throw a potential exception.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/object-oriented-testing-in-software-testing/

https://www.youtube.com/watch?v=ssJZQf3kQcQ

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:518-524

Journals:

http://ijcsit.com/docs/Volume%202/vol2issue5/ijcsit2011020571.pdf

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/object-oriented-testing-in-software-testing/
https://www.youtube.com/watch?v=ssJZQf3kQcQ
http://ijcsit.com/docs/Volume%202/vol2issue5/ijcsit2011020571.pdf

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: Test Web Application Testing For Functional Requirements

Introduction : (Maximum 5 sentences) :

 Many web applications use objects to implement the software running in the server side.

Therefore, teams that develop object-oriented applications must know how to test web

applications.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 Web Application testing

 Test case generation

 Non functional requirements

Detailed content of the Lecture:
Object-Oriented Model for Web Application Testing
 A web application involves multiple types of documents that relate to each other in a
complex manner. To help understand the documents and their relationships. A test model is
constructed. The model is useful for deriving test cases.

Static Analysis Using the Object-Oriented Model
 The test model shown can be used to detect a number of anomalies. For example, pages
that exist on the web server but do not appear in the test model are unreachable pages.
Test Case Generation Using the Object-Oriented Model
 Several test methods presented previously can be used to test the Java bean classes and the JSP

pages.

L-
LECTURE HANDOUTS

II/IV CSE

 Partition testing divides the domains ofthe form's input variables and selects test data
from the partitions to form tests. Boundary testing selects test data at the boundaries of the
partitions.
Web Application Testing with Http Unit
 The test cases generated in the last section can be implemented and executed using the
Http Unit open source software: Http unit n is an extension of Unit to web application testing. It
emulates browser behavior and allows a test case to send requests to and receive responses from
the web server.
TESTING FOR NONFUNCTIONAL REQUIREMENTS
 Software systems must also be tested with respect to nonfunctional requirements. These
include performance testing, stress testing, and security testing, among others.
Performance and Stress testing
 Performance testing is aimed to assess several aspects of the software or system, including
system workload, throughput, response time, efficiency, and resource utilization. Workload and
throughput measure the amount of work that the system processes and produces.
Testing for Security
 Conventional test methods and techniques are aimed at detecting errors in the software
while demonstrating that the software accomplishes its intended functionality and behavior.
 White-box testing approaches are applied to detect security vulnerabilities and generate
test cases.
Testing User Interface

 Defects in the look and feel of the user interface.

 Defects in data entry and output display.

 Defects in the actor-system interaction behavior.

 Defects in error handling.

 Defects in documentation and help facility.

Video Content / Details of website for further learning (if any):
https://blog.stackpath.com/web-application/

Important Books/Journals for further learning including the page nos.:
David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 page No:529-530

 Course Faculty

 Verified by HOD

https://blog.stackpath.com/web-application/

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: Testing Life Cycle

Introduction : (Maximum 5 sentences) :

 Software testing is a life-cycle activity, meaning that it should be taken into consideration in

each of the life-cycle phases. The traditional life-cycle activities and their relationships to

testing are illustrated using a V-shape diagram.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Testing Objectives

 Integration testing

Detailed content of the Lecture:

 The left leg of the V shape is mainly concerned with the construction activities of the system.

 During this period, only static testing are possible and are performed using inspection,

walkthrough, and peer reviews.

A test Plan generally specifies the following items

 Test Objectives

 Types of test

 Test methods and techniques

 Test cases

 Test Coverage Criteria

 Documents Needed

 Required resources

 Effort estimation schedule

Traditionally, integration and integration testing are performed using the following strategies:

o Big bang.

o Top down Integration

o Bottom up Integration

o Critical/ high priority Components

o Available Components

L-
LECTURE HANDOUTS

II/IV CSE

 If the functions and interfaces of the individual components are implemented according to the

design specification, then integration testing should proceed relatively smoothly.

 During the implementation and unit testing phase, the software components are implemented

and tested by the individual developers.

 It requires the programmer to understand the functionality prior to implementing the

functionality.

Video Content / Details of website for further learning (if any):

https://www.guru99.com/software-testing-life-cycle.html

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 page No:529-532

Journals

https://www.irjet.net/archives/V6/i1/IRJET-V6I1234.pdf

 Course Faculty

 Verified by HOD

https://www.guru99.com/software-testing-life-cycle.html
https://www.irjet.net/archives/V6/i1/IRJET-V6I1234.pdf

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : IV Date of Lecture:

Topic of Lecture: Regression Testing

Introduction : (Maximum 5 sentences) :

 Changing a software system or its components is inevitable. This takes place during the

development as well as the maintenance phases.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Importance of Regression testing

Detailed content of the Lecture:

 Change alters the functionality, behavior, and performance. Therefore, retesting is required to

ensure that the system or its components still satisfy the functional, performance, and security

requirements.

 Often, regression testing executes all the existing test cases or a selected subset to ensure that

the software system or its components pass the tests.

 Selecting a subset of the existing test cases can save time and effort. Test cases are selected

according to the components that are changed or affected by the changes.

 Tools for selecting regression test cases have been developed. Some of the tools instrument and

execute the software before making changes.

 This information along with the changed and affected classes are used to select the test cases

that need to be rerun.

 If X Unit has been used during development testing then regression testing simply reruns the X

Unit test cases.

 However, X Unit test cases usually do not include system testing and user interface testing. In

these cases, other regression testing tools, such as Win Runner and VI Gestures Collector (a

plug-in of Net Beans) should be used.

 These tools record the user actions and play back the recorded test scripts during regression

testing.

L-
LECTURE HANDOUTS

II/IV CSE

 Software testing is costly and time consuming. Therefore, it needs to know how much

Testing is adequate, or when to stop testing.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/software-engineering-regression-testing/

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:532-533

Journals:

https://www.springer.com/journal/10921

Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/software-engineering-regression-testing/
https://www.springer.com/journal/10921

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code :Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : VDate of Lecture:

Topic of Lecture:Software maintenance

Introduction : (Maximum 5 sentences)

 Software maintenance is modifying a software system or component after delivery to correct

faults, improve performance, add new capabilities, or adapt to a changed environment. (IEEE

Standard 610.12-1991)

 Software maintenance consumes 600/0-80%of the aotal life-cycle costs; 75% or more of the

costs are due to enhancements.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Types of Software maintenance

 Software process and activities

 Process models

 Reverse Re-Engineering

Detailed content of the Lecture:

Factors that mandate change:

 Bug Fixes

 Change in operating environment

 Change in government policies and regulations

 Change in business Procedures

 Changes to prevent future problems

LEHMAN’S Law of System Evolution

o Law of Continuing Change

o Law of increasing entropy or complexity

o Law of Self Regulation

o Law of Conservation

o Lawof continuinggrowth

Types of Software Maintenance

 Corrective maintenance

 Adaptive maintenance

 Perfectivemaintenance

 Emergency maintenance

Software Maintenance Process and Activities

1. Program understanding

2. Change identification and Analysis

L-

LECTURE HANDOUTS

II/IV CSE

3. Configuration Change Control

4. Change implementation, testing and delivery.

Maintenance Process Models

Program Understanding

To change a software system, the software engineer needs to understand the program. This is

commonly too referred as program understanding or program comprehension.

It involves a process mat extracts the design and specification artifacts from the code and represents

them in a mental model.

Change Identification and Analysis

 1. Assess the change irnpact that is, which other components will be affected by the changes

made to a given component.

 2. Estimate the costs and time required to implement the changes and test the result.

 3. Identify risks and define resolution measures.

Configuration Change Control

o Preparing an engineering change proposal.

o Evaluating the engineering change proposal.

REVERSE-ENGINEERING

Usefulness of Reverse engineering

 Program Understanding

 Formal Analysis

 Test case generation

Software Re-engineering

Objectives of Re engineering

 Improving the software architecture

 Reducing the complexity of software

 Improving the ability to adapt change

 Improving the maintainability

Patterns for Software Maintenance

 Simplifying Client interface with façade

 Simplifying component interaction with mediator

Video Content / Details of website for further learning (if any):

Can be added as link

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/

https://www.youtube.com/watch?v=qxitgylm1EU

Important Books/Journals for further learning including the page nos.:

David Kung Object-Oriented Software Engineering:An Agile Unified Methodology McGraw-Hill

Education 2013Page No:483-490

Journals:

https://www.researchgate.net/journal/1532-0618

https://www.scimagojr.com/journalsearch.php?q=89465&tip=sid&clean=0

Course Faculty

Verified by HOD

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/
https://www.youtube.com/watch?v=qxitgylm1EU
https://www.researchgate.net/journal/1532-0618
https://www.scimagojr.com/journalsearch.php?q=89465&tip=sid&clean=0

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Software Configuration Management

Introduction : (Maximum 5 sentences) :

 Software configuration management (SCM) is baseline and configuration item management.

 SCM consists of configuration item identification, configuration change control, configuration

auditing, and configuration status accounting.

 During the software life cycle, numerous documents are produced.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Life Cycle

 SCM Functions

 SCM Tools

Detailed content of the Lecture:

Baselines of Software life cycle:

SOFTWARE CONFIGURATION MANAGEMENT FUNCTIONS

 Software Configuration Identification

 Configuration Change Control

 Software Configuration Auditing

 Software Configuration status accounting

L-
LECTURE HANDOUTS

II/IV CSE

Software Configuration Identification

 ID Number

 Name

 Document Type

 Document File

 Author

 Version Number

 Update history

 Description

Software Configuration Change Control

Software Configuration Auditing

 Defining mechanisms for establishing and formally establishing a baseline.

 Configuration item verification

 Configuration item validation

 Ensuring that changes specified

CONFIGURATION MANAGEMENT IN AN AGILE PRGJECT

 Agile projects welcome change and need to respond to changes rapidly.

 However, conventional configuration management involves a rigorous and often lengthy

change control process.

SOFTWARE CONFIGURATION MANAGEMENT TOOLS

 Version Control

 Workspace Management

 Concurrency Control

 System Build

 Support to SCM Process

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/software_engineering/software_project_management.htm

https://www.youtube.com/watch?v=AaHaLjuzUm8

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No: 562-570

Journals

https://ieeexplore.ieee.org/document/6772879

https://www.researchgate.net/publication/220773173

 Course Faculty

Verified by HOD

https://www.tutorialspoint.com/software_engineering/software_project_management.htm
https://www.youtube.com/watch?v=AaHaLjuzUm8
https://ieeexplore.ieee.org/document/6772879
https://www.researchgate.net/publication/220773173

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Project Organization

Introduction : (Maximum 5 sentences) :

 Managing a software project must address a number .of issues relating to project organization.

 That is, how the reams are formed, how the teams and team members work together to carry out

the life-cycle activities.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Effort estimation method

 COCOMO II Model

 The Delphi estimation method

Detailed content of the Lecture:

Project Format

 The project format is concerned with how the life-cycle activities are assigned to the project

teams. Three project formats have been used in practice:

 project-based format

 function-based format

 hybrid format.

Team Structure

The team structure is concerned with the organization of the project teams, that is, assigning roles and

responsibilities to the team members.

 Egoless Team Structure

 Chief programmer team structure

 Hierarchal team Structure

EFFORT ESTIMATION METHODS

The Function Point Method

The function point (FP) of a system is a product of the gross function point (GFP) and the processing

complexity adjustment (PCA).

COCOMO Model II

The Application Composition Model

 The application composition model is used during the early stages of the life cycle to estimate

effort required to build a prototype. It is also used for projects that construct systems from commercial

off-the-shelf (COTS) software components.

The Early-Design Model

L-
LECTURE HANDOUTS

II/IV

CSE

 The early design model is used in tile early stages of a software project when very little about

the software size and the target environment is known. The basic formula for effort calculation is:

Estimate Software Size
The software size in thousand source lines of code (KSLOC) can be estimated in two different ways:

direct estimation or using function points.

 External inputs

 External Outputs

 Internal Logical files

 External interface files

 External Queries

The Delphi Estimation Method
 The Delphi estimation method relies on a group of experts to produce the estimation. It has the

following

Step: 1. Form a group of experts or experienced developers.

Step: 2. Present an overview of the system and its major components to the group.

Agile Estimation
 Agile processes welcome change. Therefore, agile estimation means that the effort estimates

can and must change to match the reality. Agile processes believe that good enough is enough.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:577-579

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Effort Estimation Methods

Introduction : (Maximum 5 sentences) :

 Managing a software project must address a number .of issues relating to project organization.

 That is, how the reams are formed, how the teams and team members work together to carry out

the life-cycle activities.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Effort estimation method

 COCOMO II Model

 The Delphi estimation method

Detailed content of the Lecture:

Project Format

 The project format is concerned with how the life-cycle activities are assigned to the project

teams. Three project formats have been used in practice:

 project-based format

 function-based format

 hybrid format.

Team Structure

The team structure is concerned with the organization of the project teams, that is, assigning roles and

responsibilities to the team members.

 Egoless Team Structure

 Chief programmer team structure

 Hierarchal team Structure

EFFORT ESTIMATION METHODS

The Function Point Method

The function point (FP) of a system is a product of the gross function point (GFP) and the processing

complexity adjustment (PCA).

COCOMO Model II

The Application Composition Model

 The application composition model is used during the early stages of the life cycle to estimate

effort required to build a prototype. It is also used for projects that construct systems from commercial

off-the-shelf (COTS) software components.

L-
LECTURE HANDOUTS

II/IV

CSE

The Early-Design Model
 The early design model is used in tile early stages of a software project when very little about

the software size and the target environment is known. The basic formula for effort calculation is:

Estimate Software Size
The software size in thousand source lines of code (KSLOC) can be estimated in two different ways:

direct estimation or using function points.

 External inputs

 External Outputs

 Internal Logical files

 External interface files

 External Queries

The Delphi Estimation Method
 The Delphi estimation method relies on a group of experts to produce the estimation. It has the

following

Step: 1. Form a group of experts or experienced developers.

Step: 2. Present an overview of the system and its major components to the group.

Agile Estimation
 Agile processes welcome change. Therefore, agile estimation means that the effort estimates

can and must change to match the reality. Agile processes believe that good enough is enough.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:577-579

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Planning and Scheduling

Introduction : (Maximum 5 sentences) :

 Project planning and scheduling are concerned with the scheduling of development activities

and allocation of resources to the development activities.

 Project planning and scheduling are critical to the success of a project because poor planning

may result in schedule slippage, cost overrun, poor software quality, and/or high maintenance

costs.

Prerequisite knowledge for Complete understanding and learning of Topic:
(Max. Four important topics)

 PERT Chart

 GANTT Chart

Detailed content of the Lecture:
PERT Chart

 The program evaluation and review technique (PERT) chat is widely used for project

scheduling.

 A PERT chart is an edge-weighted directed graph or digraph G = (M, T, D), where M is the set

of vertexes representing project milestones, D a set of labels denoting tasks durations, and T 0; If x M x

D the set of directed edges representing the project tasks and their durations.

The d graph satisfies the following conditions:

• It does not have parallel edges.

• It does not have cycles, that is, the digraph is acyclic

 • It has exactly one source and one sink. The source represents the start of the project and the sink the

completion of the project.

Gantt Chart and Staff Allocation

 The PERT chart is a useful tool for computing the earliest start time and latest completion time

for each of the milestones as well as the earliest completion time of the project. But a PERT chart is not

intuitive in showing the progression of the tasks and the amount of time available for each of the tasks.

L-
LECTURE HANDOUTS

II/IV

-B

CSE

The Gantt chart is a better tool for highlighting such information.

Agile Planning:

 It is easy to ensure that high-priority use cases are developed and deployed earl y. It is easy to

ensure that die dependencies between the use cases are satisfied.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:
David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:591-594

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Risk Management

Introduction : (Maximum 5 sentences) :

 Many contingencies could negatively impact a software project. Sometimes, the consequence of

such an event is unbearable.

 The National Health System project and the Textile Process Control project discussed at the

beginning of this chapter could have been avoided if proper risk analysis had been performed.

Such contingent events are commonly referred to as risks.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Risk Identification

 Risk Analysis

 Planning

 Monitoring

Detailed content of the Lecture:

Risk Identification

 Risks can be classified into universal project risks and project-specific risks. The universal

project risks are risks that can occur to all projects while project-specific risks are risks that can occur

only to a particular project.

Risk Analysis and Prioritizing

 Risk analysis is concerned with the determination of the extent of damage of each risk, options

to deal with the risk and costs to implement the options.

 The analysis is aimed to determine which option to take, the cost to implement that option, and

the extent of damage with that option.

 Risk analysis involves several basic concepts, that is, the loss probability loss magnitude, and

risk exposure.

L-
LECTURE HANDOUTS

II/IV CSE

Risk Management Planning

o Risk analysis and prioritizing identify a list of risk items, compute their combined risk

exposures, and rank them with priorities.

o The next step of risk management is producing a risk management plan to be carried out

during the development process.

o The first step of risk management planning is developing strategies to address the risk

items. The risk management techniques shown in the right-most column.

Risk Resolution and Monitoring

 Risk resolution is the implementation and execution of the risk reduction techniques specified

and scheduled in the risk management plan.

 Risk monitoring ensures that the risk reduction strategies are implemented and executed

according to schedule.

 It is aimed to ensure that the risk management process is a closed-loop process and progresses

on track. Rather than monitoring an risk items, it is more effective to focus on the top-N risk

items of the project, where N should be limited to 10, and depends on the project size, nature,

and progress status.

 The status of the top-N risk items is updated to reflect changes of their rankings from the last

review, number of months on the list, and risk-resolution status.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No: 595-599

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

CourseFaculty :

Unit : V Date of Lecture:

Topic of Lecture: Process Improvement

Introduction : (Maximum 5 sentences) :

 A software process defines a series of activities for constructing a software system.

 The execution of a software process has to be monitored and data about various aspects of the

process including productivity, quality, costs, and time to market should be collected.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 CMMI Model

 Software process

Detailed content of the Lecture:

 The CMMI was originally developed by the Software Engineering Institute (SEI) to assist the

U.S. Department of Defense (DDD) to assess the performance of the defense contractors.

 During the years, the CMMI has expanded its acceptance beyond the defense industry;

currently, it is widely used by many software development organizations.

The CMMI model has a number of merits:

 • It reflects the actual process improvement practices. For example, studies show that the

delivered defect densities or delivered defects per 1,OOO.tines of code for CMMI level I to level S are

7.5, 6_24, 4.73, 2_28, and l.05;respectively.

 • For each level, it clearly defines the improvement goals and progress measures.

 • The five maturity levels define a logical roadmap toward an optimizing process. The

improvement from one level to the next higher level can usually be achieved in two years.

 • The recommendation provides improvement priorities.

To improve the software process, an organization performs the following steps, which may serve as a

self-study:

 1. Evaluate the current process to gain an understanding of its status, that is, what is the

maturity level of the current process.

 2. Develop a vision for the desired process at the next higher maturity level, guided by the key

process areas.

 3. Define a plan of prioritized actions for improvement. 4. Implement the action plan. 5. Repeat

the above steps to move to the next high level.

L-
LECTURE HANDOUTS

II/IV

CSE

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/layers-of-osi-model/

https://www.youtube.com/watch?v=EzLMMsRR6Js

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 Page No:599-600

 Course Faculty

 Verified by HOD

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.youtube.com/watch?v=EzLMMsRR6Js

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Software Security in the Life Cycle

Introduction : (Maximum 5 sentences) :

 Software security is a proactive, rather than reactive, approach to constructing secure software.

 Consideration of software security should begin in the requirements phase and continue

throughout the life cycle.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Software Security

 Security requirements

 Design principles

Detailed content of the Lecture:

o Basic concepts of software security

o Importance of software security.

o Security attacks and defenses.

o Security requirements.

o Secure software design principles.

o Security patterns.

o Life-cycle activities for building secure software.

SOFTWARE SECURITY

 Modeling and analysis for security.

 Design for security.

 Secure coding

 Test for security

SECURITY REQUIREMENTS

 Identification requirements

 Authentication requirements

 Immunity requirements

 Integrity requirements

 Privacy requirements

L-
LECTURE HANDOUTS

II/IV

CSE

SECURE SOFTWARE DESIGN PRINCIPLES

 Secure the weakest link.

 Practice defense in depth.

 Fail securely.

 Least privilege.

 Compartmentalize.

 Keep it simple and stupid.

SECURE SOFTWARE DESIGN PATTERNS

 These software design patterns help software developers produce quality software while

improving teamwork, communication and productivity.

 Patterns are proven design solutions to commonly encountered design problems.

RISK ANALYSIS WITH AN ATTACK TREE

 The architectural risk analysis and misuse cases can benefit from the use of attack trees, which

are derived from the fault tree analysis technique.

There are two types of node:

 AND-node

 OR-node.

An AND-node means that the problem is solved if all of its child problems are solved.

An OR-node, which is the default, means the problem is solved if one of its child problems is solved.

SOFTWARE SECURITY IN THE LIFE CYCLE

Security in the Planning Phase

Deriving Security Requirements
 Software security is aimed at building software systems that possess the ability to thwart

security attacks and recover from successful attacks.

Identifying Misuse Cases

 Building secure systems must ensure that the security requirements are complete and adequate,

and the security mechanisms are properly implemented.

 If these conditions are not met, then attackers could exploit the flaws to launch attacks.

Producing a Secure Architecture

1. Produce an architectural design that satisfies the security requirements and accounts for misuse

cases.

2. Evaluate the architectural design to identify significant security risks.

3. Modify the architectural design to remove or mitigate the significant security risks.

4. Repeat the last two steps until an acceptable risk level is achieved.

Security in the Iterative Phase

 Security in Requirements Change

 Requirements change is a common practice .n today's software development. Requirements can

change as often as every day or every week, especially at the beginning of an agile project.

Security in Behavioral Design

 The behavioral design activities include design of expanded use cases, sequence diagrams, state

diagrams, activity diagrams, and derivation of a design class diagram.

Security in implementation, Testing, and Deployment

1. Guiding implementation with secure software design principles. Many secure software design

principles are applicable to implementation.

2. Applying implementation-level security patterns.

3. Practice secures programming principles and practices.

4. Testing for security.

Video Content / Details of website for further learning (if any):

https://resources.infosecinstitute.com/intro-secure-software-development-life-cycle/

https://dzone.com/articles/how-to-approach-security-development-lifecycle-sdl

Important Books/Journals for further learning including the page nos.:

David Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill

Education,2013 PAGE NO:614-623

 Course Faculty

 Verified by HOD

https://resources.infosecinstitute.com/intro-secure-software-development-life-cycle/
https://dzone.com/articles/how-to-approach-security-development-lifecycle-sdl

MUTHAYAMMAL ENGINEERING COLLEGE

 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to

Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : Object Oriented Software Engineering-16CSD04

Course Faculty :

Unit : V Date of Lecture:

Topic of Lecture: Applying Agile Principles- Software Tools

Introduction : (Maximum 5 sentences) :

 Conventional approaches treat maintenance as a post-development activity.

 For an agile project, maintenance begins with the delivery of the first increment or release

development is maintenance and maintenance is development.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Four important topics)

 Software Security

Detailed content of the Lecture:

 The maintenance process models also have the requirements, design, implementation, and

testing phases as in the development process.

 This implies that the agile principles applicable to the development phases are also applicable

to the phases of the maintenance process.

 Therefore, the following only presents principles that are specific to maintenance.

GUlDELINE: Good enough is enough.

 Improving the structure of the software system is important because it reduces the maintenance

costs. However.

 Perfective maintenance is not aimed at obtaining the perfect architecture. In fact, the perfect or

optimal architecture does not exist. A good enough architecture is good enough

TOOLS SUPPORT fOR SOFTWARE MAINTENANCE

 Many software maintenance activities are tedious and time consuming. Moreover, software

maintenance needs to coordinate the changes to ensure consistency.

 The resulting software system needs to be retested to ensure that it satisfies the requirements

and constraints.

 The use of software tools can significantly reduce the time and effort.

 The following are some of the tools that are useful for software maintenance:

 Reverse-engineering tools are useful for design and specification recovery. They aid program

comprehension and identification of places that need improvement.

 These tools are extremely valuable when the design documentation is missing, outdated, or

inadequate.

L-
LECTURE HANDOUTS

II/IV

CSE

Metrics calculation tools compute and display quantitative measurements of a software system.

 They help in identifying and highlighting places that need improvement. For example, classes

that consist of thousands of lines of code are difficult to maintain and are more likely to be error

prone.

 Classes that have an excessive number of functions may be assigned too many responsibilities.

Methods with a high complexity are candidates for improvement.

Performance measurement tools such as software profilers can display execution times, invocation

Frequencies, and memory usage of various components of a software system.

 They are useful for identifying performance bottlenecks and memory-intensive components,

Software reengineering may be needed to mitigate these problems.

Static analysis tools are useful for detecting violation of coding standards, incorrect use of types,

existence of certain bogs and anomalies, and security vulnerabilities.

Change impact analysis tools are useful for assessing the scope of impact of proposed improvements.

 The change impact analysis results are the basis for the estimation of the effort required to

perform the proposed improvements.

Effort estimation tools are useful for calculating the required time, effort, and costs to implement the

proposed improvements.

Configuration management tools such as Coocurrent Versions System (CVS) and Subversion are

useful for coordinating tile changes to maintain the consistency of the software being reengineered.

 Regression testing tools are useful for rerunning the test cases to ensure that the system satisfies the

requirements and reengineering does not introduce new errors.

 Some of the tools can analyze the software and select a subset of test cases to rerun. This

reduces the regression testing time and effort.

Video Content / Details of website for further learning (if any):

https://www.crossware.co.nz/blog/top-5-lotus-notes-software-tools/

https://www.slideshare.net/ravindravekariya/software-tools-38364252

Important Books/Journals for further learning including the page nos.:

David Kung Object-Oriented Software Engineering: An Agile Unified Methodology McGraw-Hill

Education 2013. Page no:627-628

 Course Faculty

 Verified by HOD

https://www.crossware.co.nz/blog/top-5-lotus-notes-software-tools/
https://www.slideshare.net/ravindravekariya/software-tools-38364252

