

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: Introduction to OOAD

Introduction :
 Object-oriented analysis and design (OOAD) is a technical approach for analyzing and

designing an application, system, or business by applying object-oriented programming, as
well as using visual modeling throughout the software development process to guide
stakeholder communication and product quality.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Class and Object
 Message, operation and method
 Encapsulation
 Abstraction
 Inheritance
 Polymorphism

Detailed content of the Lecture:
Class and Object

 UML class is a classifier which describes a set of objects that share the same features,
Constraints, semantics.

 Class may be modeled as being active, meaning that an instance of the class has some
autonomous behavior.

 Object is an instance of a class.

Message, operation and method

 Messages are intrinsic elements of UML interaction diagrams. A message defines a specific kind
of communication between lifelines of an interaction.

 A communication can be, for example, invoking an operation, replying back, creating or
destroying an instance, raising a signal.

 It also specifies the sender and the receiver of the message.
 Create message is shown as a dashed line with open arrowhead, and pointing to the created

lifeline's head.

L‐1LECTURE HANDOUTS

III / V CSE

Encapsulation

 Encapsulation was describing abstraction mechanisms in
programming language CLU in the context of hiding details of implementation.

 Encapsulation is a development technique which includes
 creating new data types classes by combining both information structure and behaviors, and
 restricting access to implementation details.

 Encapsulated classifier in UML is a structured classifier isolated
from its environment by using ports. Each port specifies a distinct interaction point between
classifier and its environment.

Abstraction

 Abstraction is a dependency relationship that relates two elements
or sets of elements called client and supplier representing the same concept but at different
levels of abstraction or from different viewpoints.

 Realization is a specialized abstraction relationship between two sets of model elements, one
representing a specification the supplier and the other represents an implementation of the
latter the client.

Inheritance
 Inheritance as the mechanism by which those more specific elements incorporate structure and

behavior of the more general elements. Inheritance supplements generalization relationship.
 Generalization is defined as a taxonomic relationship between a more general element and a

more specific element.
Polymorphism
 Polymorphism is ability to apply different meaning semantics, implementation to the same
symbol message, and operation in different contexts.
 When context is defined at compile time, it is called static or compile-time polymorphism.
When context is defined during program execution, it is dynamic or run-time polymorphism.

Video Content / Details of website for further learning (if any):
https://www.uml-diagrams.org/uml-object-oriented-concepts.html

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[1-16]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: Unified Process

Introduction :
 The Unified Process (UP), or Unified Software Development Process, is a iterative and

incremental software development framework from which a customized process can be
defined.

 The framework contains many components and has been modified a number of times to create
several variations.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Design
 Implementation
 Testing
 deployment

Detailed content of the Lecture:
 Unified process (UP) is an architecture-centric, use-case driven, iterative and incremental

development process that leverages unified modeling language and is compliant with the
system process engineering metamodel .

 Unified process can be applied to different software systems with different levels of technical
and managerial complexity across various domains and organizational cultures.

Analysis and Design

L ‐2 LECTURE HANDOUTS

III / V CSE

o Analysis and Design discipline would be better named the Solution Analysis and Design
discipline in my opinion.

o This is because the requirements are analyzed from a solution design perspective, rather than a
requirements analysis perspective. Specific activities that are part of this discipline include:

o Understanding and analyzing the requirements for the system
o Defining a candidate architecture for a system
o Constructing a proof-of-concept or prototype to validate a candidate architecture
o Design of components, services, and/or modules
o Design of interfaces (network, user, and databases)

Implementation
 The Implementation discipline consists of coding, unit testing, and integration of the software.

Testing
 The Testing discipline is focused on quality assurance of the software being released in that cycle
or iteration. It includes such activities as: [4]

o Planning test efforts
o Creating test cases
o Running tests
o Reporting defects

Deployment
 The Deployment discipline is focused on planning the deployment of, and actually deploying, the
software that is being completed that cycle, phase or iteration. It includes such activities as:[4]

o Planning the deployment
o Developing support and operations materials
o Planning alpha, beta, and pilot testing efforts
o Deploying the software
o Training end users
o Managing acceptance testing efforts

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=nFoumijTcUg

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[25-25]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: UML diagram –Use Cases

Introduction :
 The Unified Modeling Language (UML) is a graphical language for OOAD that gives a

standard way to write a software system's blueprint.
 It helps to visualize, specify, construct, and document the artifacts of an object-oriented system.
 It is used to depict the structures and the relationships in a complex system.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Dynamic behavior.
 UML

Detailed content of the Lecture:

 Use case diagrams are considered for high level requirement analysis of a system.

 When the requirements of a system are analyzed, the functionalities are captured in use cases.

 We can say that use cases are nothing but the system functionalities written in an organized
manner. The second thing which is relevant to use cases are the actors.

 Actors can be defined as something that interacts with the system.

Actors can be a human user, some internal applications, or may be some external applications. When
we are planning to draw a use case diagram, we should have the following items identified.

 Functionalities to be represented as use case

 Actors

 Relationships among the use cases and actors.

Use case diagrams are drawn to capture the functional requirements of a system. After identifying the
above items, we have to use the following guidelines to draw an efficient use case diagram

 The name of a use case is very important. The name should be chosen in such a way so that it
can identify the functionalities performed.

 Give a suitable name for actors.

 Show relationships and dependencies clearly in the diagram.

 Do not try to include all types of relationships, as the main purpose of the diagram is to
identify the requirements.

L‐3LECTURE HANDOUTS

III / V CSE

 Use notes whenever required to clarify some important points.

Following is a sample use case diagram representing the order management system. Hence, if we
look into the diagram then we will find three use cases (Order, Special Order, and Normal
Order) and one actor which is the customer.

The Special Order and Normal Order use cases are extended from Order use case. Hence, they have
extended relationship. Another important point is to identify the system boundary, which is shown in
the picture. The actor Customer lies outside the system as it is an external user of the system.

Video Content / Details of website for further learning (if any):
https://www.smartdraw.com/uml-diagram/

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[10-19]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: Class diagrams

Introduction :
 Class diagrams are the backbone of almost every object-oriented method, including UML.

 They describe the static structure of a system.

Prerequisite knowledge for Complete understanding and learning of Topic
 Building blocks of object oriented modeling
 Dynamic structure of the system

Detailed content of the Lecture:
Class diagram

 The UML Class diagram is a graphical notation used to construct and visualize object

oriented systems.
 A class diagram in the Unified Modeling Language (UML) is a type of static structure

diagram that describes the structure of a system by showing the
system's:classes,theirattributes,operations (or methods),
and the relationships among objects.

 A Class is a blueprint for an object. Objects and classes go hand in hand. and the entire point

of Object-Oriented Design is not about objects, it's about classes, because we use classes to

create objects. So a class describes what an object will be, but it isn't the object itself.

 In fact, classes describe the type of objects, while objects are usable instances of classes.

 Each Object was built from the same set of blueprints and therefore contains the same

components (properties and methods). The standard meaning is that an object is an instance

of a class and object - Objects have states and behaviors.

 A Class is a blueprint for an object. Objects and classes go hand in hand. So a class describes

what an object will be, but it isn't the object itself.

 In fact, classes describe the type of objects, while objects are usable instances of classes.

 Each Object was built from the same set of blueprints and therefore contains the same

L‐4LECTURE HANDOUTS

III / V CSE

components (properties and methods).

 The standard meaning is that an object is an instance of a class and object - Objects have

states and behaviors.

UML Class Notation

 A class represent a concept which encapsulates state attributes and behavior operations.

 Each attribute has a type. Each operation has a signature.

 The class name is the only mandatory information.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=UI6lqHOVHic

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[35-50]

Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: - Interaction diagrams

Introduction :

 This interactive behavior is represented in UML by two diagrams known as Sequence
diagram and Collaboration diagram.

 The basic purpose of both the diagrams is similar.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Dynamic behavior of a system

 Message flow in the system

 Structural organization of the objects

 Interaction among objects

Detailed content of the Lecture:

 Two interaction diagrams modeling the order management system. The first diagram is a
sequence diagram and the second is a collaboration diagram.

Sequence Diagram

 The sequence diagram has four objects (Customer, Order, Special Order and Normal Order).

 The following diagram shows the message sequence for Special Order object and the same can
be used in case of Normal Order object.

 It is important to understand the time sequence of message flows.

 The message flow is nothing but a method call of an object.

 The first call is send Order () which is a method of Order object.

 The next call is confirm () which is a method of Special Order object and the last call
is Dispatch () which is a method of Special Order object.

 The following diagram mainly describes the method calls from one object to another, and this
is also the actual scenario when the system is running.

L‐5LECTURE HANDOUTS

III / V CSE

The Collaboration Diagram

 The second interaction diagram is the collaboration diagram. It shows the object organization
as seen in the following diagram.

 In the collaboration diagram, the method call sequence is indicated by some numbering
technique.

 The number indicates how the methods are called one after another.
 We have taken the same order management system to describe the collaboration diagram.

 However, difference being the sequence diagram does not describe the object organization,
whereas the collaboration diagram shows the object organization.

 To choose between these two diagrams, emphasis is placed on the type of requirement.

 If the time sequence is important, then the sequence diagram is used.

 If organization is required, then collaboration diagram is used.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=Ba7SyM78cUM

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: - State diagram

Introduction :
 A state diagram is a type of diagram used in computer science and related fields to describe the

behavior of systems.
 State diagrams require that the system described is composed of a finite number of states;

sometimes, this is indeed the case, while at other times this is a reasonable abstraction.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Behavior of the system
 Reasonable abstraction

Detailed content of the Lecture:

 A state diagram is used to represent the condition of the system or part of the system at finite
instances of time..

Difference between state diagram and flowchart –
The basic purpose of a state diagram is to portray various changes in state of the class and not the processes
or commands causing the changes.

state diagram for user verification

Basic components of a statechart diagram –

 Initial state – We use a black filled circle represent the initial state of a System or a class.

initial state notation

 Transition – We use a solid arrow to represent the transition or change of control from one state to
another. The arrow is labelled with the event which causes the change in state.

L‐6LECTURE HANDOUTS

III / V CSE

transition

 State – We use a rounded rectangle to represent a state. A state represents the conditions or
circumstances of an object of a class at an instant of time.

state notation

 Fork – We use a rounded solid rectangular bar to represent a Fork notation with incoming arrow
from the parent state and outgoing arrows towards the newly created states.

 diagram using the fork notation

Join – We use a rounded solid rectangular bar to represent a Join notation with incoming arrows
from the joining states and outgoing arrow towards the common goal state.

diagram using join notation

Self transition – We use a solid arrow pointing back to the state itself to represent a self transition.

self transition notation

Composite state – We use a rounded rectangle to represent a composite state also. We represent a
state with internal activities using a composite state.

state with internal activities

Final state – We use a filled circle within a circle notation to represent the final state in a state
machine diagram.

final state notation

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=KBNSZp2Ysdg

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[107-115]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: - Activity diagrams

Introduction :
 Activity diagrams are graphical representations of workflows of stepwise activities and

actions with support for choice, iteration and concurrency.
Prerequisite knowledge for Complete understanding and learning of Topic:

 Behavior of a system

 Interaction and concurrency

Detailed content of the Lecture:

 Activity Diagrams describe how activities are coordinated to provide a service which can
be at different levels of abstraction.

 Typically, an event needs to be achieved by some operations, particularly where the
operation is intended to achieve a number of different things that require coordination, or
how the events in a single use case relate to one another, in particular, use cases where
activities may overlap and require coordination.

 It is also suitable for modeling how a collection of use cases coordinate to represent
business workflows

1. Identify candidate use cases, through the examination of business workflows

2. Identify pre- and post-conditions (the context) for use cases

3. Model workflows between/within use cases

4. Model complex workflows in operations on objects

5. Model in detail complex activities in a high level activity Diagram

Activity Diagram - Learn by Examples

A basic activity diagram - flowchart like

L‐7

LECTURE HANDOUTS

III / V CSE

Activity Diagram - Modeling a Word Processor

The activity diagram example below describes the workflow for a word process to create a
document through the following steps:

 Open the word processing package.

 Create a file.

 Save the file under a unique name within its directory.

 Type the document.

 If graphics are necessary, open the graphics package, create the graphics, and paste the
graphics into the document.

 If a spreadsheet is necessary, open the spreadsheet package, create the spreadsheet, and
paste the spreadsheet into the document.

 Save the file.

 Print a hard copy of the document.

 Exit the word processing package

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/cpu-scheduling-in-operating-systems/

Important Books/Journals for further learning including the page nos.:
Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Prentice
Hall of India, 3rd Edition 2015[117-130]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna
University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: -Package diagram

Introduction :
 A package diagram in the Unified Modeling Language depicts the dependencies between

the packages that make up a model.
 A deployment diagram is a UML diagram type that shows the execution architecture of a

system, including nodes such as hardware or software execution environments, and the
middleware connecting them.

 Deployment diagrams are typically used to visualize the physical hardware and software
of a system.

Prerequisite knowledge for Complete understanding and learning of Topic
 Dependencies between packages
 Visualize physical hardware and software

Detailed content of the Lecture:
Package Diagram
Package diagrams are used to structure high level system elements. Packages are used for
organizing large system which contains diagrams, documents and other key deliverables.

 Package Diagram can be used to simplify complex class diagrams, it can group classes into
packages.

 A package is a collection of logically related UML elements.
 Packages are depicted as file folders and can be used on any of the UML diagrams.
 Packages appear as rectangles with small tabs at the top.
 The package name is on the tab or inside the rectangle.
 The dotted arrows are dependencies.
 One package depends on another if changes in the other could possibly force changes in

the first.

L‐8

LECTURE HANDOUTS

III / V CSE

Deployment diagram

 A deployment diagram is a UML diagram type that shows the execution architecture of a
system, including nodes such as hardware or software execution environments, and the
middleware connecting them.

 Deployment diagrams are typically used to visualize the physical hardware and software
of a system.

Purpose of Deployment Diagrams
 They show the structure of the run-time system
 They capture the hardware that will be used to implement the system and the links

between different items of hardware.
 They model physical hardware elements and the communication paths between them
 They can be used to plan the architecture of a system.
 They are also useful for Document the deployment of software components or nodes.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3bfJ5AORAjQ

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[89-95]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna
University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Code & Name : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Name of the Faculty :

Year / Semester/Section : III / V/ A

Unit : I- UML DIAGRAMS Date of Lecture:

Topic of Lecture: - Component and Deployment Diagrams

Introduction :
 Component diagrams are used to visualize the organization and relationships among

components in a system. These diagrams are also used to make executable systems.
 Deployment diagrams are used to describe the static deployment view of a system.
 Deployment diagrams consist of nodes and their relationships.

Prerequisite knowledge for Complete understanding and learning of Topic

 Dependencies between packages
 Visualize physical hardware and software

Detailed content of the Lecture:
 Component diagrams are used to describe the physical artifacts of a system. This artifact

includes files, executables, libraries, etc
 The purpose of this diagram is different. Component diagrams are used during the

implementation phase of an application. However, it is prepared well in advance to visualize
the implementation details.

 Initially, the system is designed using different UML diagrams and then when the artifacts are
ready, component diagrams are used to get an idea of the implementation.

 This diagram is very important as without it the application cannot be implemented efficiently.
A well-prepared component diagram is also important for other aspects such as application
performance, maintenance, etc.

 Before drawing a component diagram, the following artifacts are to be identified clearly −
 Files used in the system.
 Libraries and other artifacts relevant to the application.
 Relationships among the artifacts.
 After identifying the artifacts, the following points need to be kept in mind.
 Use a meaningful name to identify the component for which the diagram is to be drawn.
 Prepare a mental layout before producing the using tools.
 Use notes for clarifying important points.
 Following is a component diagram for order management system. Here, the artifacts are files.

The diagram shows the files in the application and their relationships.
 In actual, the component diagram also contains dlls, libraries, folders, etc.
 In the following diagram, four files are identified and their relationships are produced.

L ‐9

LECTURE HANDOUTS

III / V CSE

 Component diagram cannot be matched directly with other UML diagrams discussed so far as
it is drawn for completely different purpose.

 The following component diagram has been drawn considering all the points mentioned
above.

 Deployment diagram represents the deployment view of a system. It is related to the
component diagram because the components are deployed using the deployment diagrams.
A deployment diagram consists of nodes. Nodes are nothing but physical hardware used to
deploy the application.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3bfJ5AORAjQ

Important Books/Journals for further learning including the page nos.:
Martin Fowler, UML Distilled, PHI/Pearson Education,2007[97-98]

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture: GRASP: Designing objects with responsibilities

Introduction :
 GRASP - General Responsibility Assignment Software Patterns or Principles,

abbreviated GRASP, consist of guidelines for assigning responsibility to classes
and objects in object-oriented design.

 It is not related to the SOLID design principle.
Prerequisite knowledge for Complete understanding and learning of Topic:

 Assigning responsibilities

 Aspects of object design

Detailed content of the Lecture:
Five GRASP patterns:

 Creator
 Information Expert
 Low Coupling
 Controller

Creator
 The concept of composition (Composite aggregates Part, Container contains Content, and

Recorder records)
 Expert pattern: initializing data is passed in during creation via some kind of initialization

method, such as a java constructor that has parameters.
 Assume that a payment instance, when created, needs to be initialized with the sale total. Since

sale knows the total, sale is a candidate creator of the payment.

Information Expert

 Assign a responsibility to the information expert the class that has the information necessary to
fulfill the responsibility.

 To create the interaction diagrams in order to assign responsibilities to objects.
 To fulfill the responsibility of knowing and answering the sale's total.
 Assign three responsibilities to three design classes of objects in the interaction diagram.
 Summarize the methods in the method section of a class diagram

Low Coupling

 Assign a responsibility so that coupling remains low. Use this principle to evaluate alternatives

L‐10LECTURE HANDOUTS

III / V CSE

– Coupling
 An element with low coupling is not dependent on too many other classes, subsystems,

systems.
 High coupling problems:

 Forced local changes because of changes in related classes.
 Harder to understand in isolation.
 Harder to reuse because its use requires the additional presence of the classes on which it is

dependent.

Controller

 A controller is the first object beyond the UI layer that is responsible for receiving or handling a
system operation message.

 System operations were first explored during the analysis of SSD (next page).
 These are the major input events upon our system.

 e.g., – When a cashier using a POS terminal presses the "end sale" button , he is generating a

system event indicating "the sale has ended."

 When a writer using a word processor presses the "spell check" button, he is generating a
system event indicating "perform a spell check.

Video Content / Details of website for further learning (if any):

https://slideplayer.com/slide/9445997/

Important Books/Journals for further learning including the page nos.:

James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference Manual,

Addison Wesley,2005

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code: 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture : Creator

Introduction :
 Design patterns represent the best practices used by experienced object-oriented software

developers.
 Design patterns are solutions to general problems that software developers faced during

software development.
 These solutions were obtained by trial and error by numerous software developers over

quite a substantial period of time.
Prerequisite knowledge for Complete understanding and learning of Topic:

 Creational
 Factory
 Behavioral

Detailed content of the Lecture:

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides published
a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated
the concept of Design Pattern in Software development.

These authors are collectively known as Gang of Four (GOF). According to these authors design
patterns are primarily based on the following principles of object orientated design.

 Program to an interface not an implementation

 Favor object composition over inheritance

Usage of Design Pattern

Design Patterns have two main usages in software development.

Common platform for developers

Design patterns provide a standard terminology and are specific to particular scenario. For
example, a singleton design pattern signifies use of single object so all developers familiar with
single design pattern will make use of single object and they can tell each other that program is
following a singleton pattern.

Best Practices

Design patterns have been evolved over a long period of time and they provide best solutions to

L ‐11

LECTURE HANDOUTS

III / V CSE

certain problems faced during software development. Learning these patterns helps un-
experienced developers to learn software design in an easy and faster way.

Types of Design Pattern

As per the design pattern reference book Design Patterns - Elements of Reusable Object-
Oriented Software , there are 23 design patterns. These patterns can be classified in three
categories: Creational, Structural and behavioral patterns. We'll also discuss another category of
design patterns: J2EE design patterns.

S.N. Pattern & Description

1 Creational Patterns
These design patterns provides way to create objects while hiding the creation logic,
rather than instantiating objects directly using new operator. This gives program more
flexibility in deciding which objects need to be created for a given use case.

2 Structural Patterns
These design patterns concern class and object composition. Concept of inheritance is
used to compose interfaces and define ways to compose objects to obtain new
functionalities.

3 Behavioral Patterns
These design patterns are specifically concerned with communication between objects.

4 J2EE Patterns
These design patterns are specifically concerned with the presentation tier. These
patterns are identified by Sun Java Center.

Video Content / Details of website for further learning (if any):
https://www.journaldev.com/1392/factory-design-pattern-in-java

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference
Manual, Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (Autonomous)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II -Design Patterns Date of Lecture:

Topic of Lecture : Information expert

Introduction :
 Information Expert is a principle used to determine where to delegate responsibilities.
 These responsibilities include methods, computed fields and so on.
 Using the principle of Information Expert a general approach to assigning responsibilities

is to look at a given responsibility, determine the information needed to fulfil it, and then
determine where that information is stored.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Creational
 Factory
 Behavioral

Detailed content of the Lecture:
Problem definition

 Information Expert is a principle used to determine where to delegate responsibilities.

 These responsibilities include methods, computed fields and so on.

 Using the principle of Information Expert a general approach to assigning responsibilities
is to look at a given responsibility, determine the information needed to fulfil it, and then
determine where that information is stored.

 Information Expert will lead to placing the responsibility on the class with the most
information required to fulfil it.

Analysis

 Information Expert is a basic principle of delegating responsibilities in object oriented
development.

 Main idea is very simple and intuitive – objects do only those operations which are
connected with contained by them informations.

 Result of using this principle are solutions in which objects do those operations which in

L ‐12

LECTURE HANDOUTS

III / V CSE

real world normally do somebody on representing by them real objects.

 This pattern is also analogy to the real world – it’s quite natural that responsibilities are
delegated to the peoples who have appropriate knowledge.

Contraindication

 In some situations the solution resulting from Information Expert principle is not the best
one because of problems with coupling and cohesion.

 What is more, we have to be careful about not breaking layer separation principle.

 What object should write class A to the database? The most of information contains class A
itself so Information Expert says us that the class A should be responsible for writing itself
to database.

 But this new responsibilities would decrease cohesion and break layer separation rule.

Advantages

 The rule of encapsulation is fulfilled – the objects do operations on the basis of contained
information’s.

 This usually will follow to the decreasing the number of connections between objects and
decreasing of coupling.

 What is more, different behaviors of the system are assigned to the different classes.

Video Content / Details of website for further learning (if any):
https://www.journaldev.com/1392/factory-design-pattern-in-java

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference
Manual, Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code: 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture : Information expert

Introduction :
 Information Expert is a principle used to determine where to delegate responsibilities.
 These responsibilities include methods, computed fields and so on.
 Using the principle of Information Expert a general approach to assigning responsibilities

is to look at a given responsibility, determine the information needed to fulfil it, and then
determine where that information is stored.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Creational
 Factory
 Behavioral

Detailed content of the Lecture:
Problem definition

 Information Expert is a principle used to determine where to delegate responsibilities.

 These responsibilities include methods, computed fields and so on.

 Using the principle of Information Expert a general approach to assigning responsibilities
is to look at a given responsibility, determine the information needed to fulfil it, and then
determine where that information is stored.

 Information Expert will lead to placing the responsibility on the class with the most
information required to fulfil it.

Analysis

 Information Expert is a basic principle of delegating responsibilities in object oriented
development.

 Main idea is very simple and intuitive – objects do only those operations which are
connected with contained by them informations.

 Result of using this principle are solutions in which objects do those operations which in

L ‐13

LECTURE HANDOUTS

III / V CSE

real world normally do somebody on representing by them real objects.

 This pattern is also analogy to the real world – it’s quite natural that responsibilities are
delegated to the peoples who have appropriate knowledge.

Contraindication

 In some situations the solution resulting from Information Expert principle is not the best
one because of problems with coupling and cohesion.

 What is more, we have to be careful about not breaking layer separation principle.

 What object should write class A to the database? The most of information contains class A
itself so Information Expert says us that the class A should be responsible for writing itself
to database.

 But this new responsibilities would decrease cohesion and break layer separation rule.

Advantages

 The rule of encapsulation is fulfilled – the objects do operations on the basis of contained
information’s.

 This usually will follow to the decreasing the number of connections between objects and
decreasing of coupling.

 What is more, different behaviors of the system are assigned to the different classes.

Video Content / Details of website for further learning (if any):
https://www.journaldev.com/1392/factory-design-pattern-in-java

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference
Manual, Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture : Controller-Design Patterns
Introduction :

 Design patterns represent the best practices used by experienced object-oriented software
developers.

 Design patterns are solutions to general problems that software developers faced during
software development.

 These solutions were obtained by trial and error by numerous software developers over quite a
substantial period of time.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Creational
 Factory
 Behavioral

L‐14

LECTURE HANDOUTS

III / V CSE

Detailed content of the Lecture:

 These authors are collectively known as Gang of Four (GOF).

 According to these authors design patterns are primarily based on the following principles of
object orientated design.

 Program to an interface not an implementation

 Favor object composition over inheritance

 Design patterns represent the best practices used by experienced object-oriented software
developers.

Usage of Design Pattern

 Design Patterns have two main usages in software development.

 Common platform for developers

 Design patterns provide a standard terminology and are specific to particular scenario.

 For example, a singleton design pattern signifies use of single object so all developers familiar
with single design pattern will make use of single object and they can tell each other that
program is following a singleton pattern.

Best Practices

 Design patterns have been evolved over a long period of time and they provide best solutions
to certain problems faced during software development.

 Learning these patterns helps un-experienced developers to learn software design in an easy
and faster way.

CONTROLLER
 The controller pattern assigns the responsibility of dealing with system events to a non-UI class

that represents the overall system or a use case scenario.
 The controller is defined as the first object beyond the UI layer that receives and coordinates

("controls") a system operation.
 The controller pattern assigns the responsibility of dealing with system events to a non-UI class

that represents the overall system or a use case scenario.
 A controller object is a non-user interface object responsible for receiving or handling a system

event.

Video Content / Details of website for further learning (if any):
https://www.journaldev.com/1392/factory-design-pattern-in-java

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference Manual,
Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture : Creational -factory method

Introduction :
 Creational design patterns are design patterns that deal with object creation mechanisms,

trying to create objects in a manner suitable to the situation.
 The basic form of object creation could result in design problems or in added complexity to the

design.
 Factory Method is a creational design pattern that provides an interface for creating objects in a

superclass, but allows subclasses to alter the type of objects that will be created.
Prerequisite knowledge for Complete understanding and learning of Topic:

 Creational
 Factory
 Behavioral

Detailed content of the Lecture:
 Creational design patterns are design patterns that deal with object creation mechanisms,

trying to create objects in a manner suitable to the situation.
 The basic form of object creation could result in design problems or in added complexity to the

design.
Creational design patterns

 Creational design patterns are concerned with the way of creating objects.
 These design patterns are used when a decision must be made at the time of instantiation of a

class (i.e. creating an object of a class).
 But everyone knows an object is created by using new keyword in java. For example:

1. StudentRecord s1=new StudentRecord();

 Hard-Coded code is not the good programming approach.
 Here, we are creating the instance by using the new keyword.
 Sometimes, the nature of the object must be changed according to the nature of the program.
 In such cases, we must get the help of creational design patterns to provide more general and

flexible approach
 .

Types of creational design patterns

L‐15

LECTURE HANDOUTS

III / V CSE

There are following 6 types of creational design patterns.

1. Factory Method Pattern

2. Abstract Factory Pattern

3. Singleton Pattern

4. Prototype Pattern

5. Builder Pattern

6. Object Pool Pattern

FACTORY METHOD

 Factory Method is a creational design pattern that provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of objects that will be created.

FACTORY METHOD PATTERN

 A Factory Pattern or Factory Method Pattern says that just define an interface or abstract class
for creating an object but let the subclasses decide which class to instantiate.

 In other words, subclasses are responsible to create the instance of the class.

The Factory Method Pattern is also known as Virtual Constructor.

ADVANTAGE OF FACTORY DESIGN PATTERN

o Factory Method Pattern allows the sub-classes to choose the type of objects to create.
o It promotes the loose-coupling by eliminating the need to bind application-specific classes into

the code. That means the code interacts solely with the resultant interface or abstract class, so
that it will work with any classes that implement that interface or that extends that abstract
class.

USAGE OF FACTORY DESIGN PATTERN
o When a class doesn't know what sub-classes will be required to create
o When a class wants that its sub-classes specify the objects to be created.
o When the parent classes choose the creation of objects to its sub-classes.

Video Content / Details of website for further learning (if any):
https://www.journaldev.com/1392/factory-design-pattern-in-java

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference Manual,
Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture: GRASP-Structural, Bridge

Introduction :
 Bridge pattern decouple an abstraction from its implementation so that the two can vary

independently.
 Introduce a class to convert the interface of one component into another interface is called

adapter.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software system blueprint

 Depict structures and relationship in complex object

Detailed content of the Lecture:
Bridge pattern

 The bridge pattern is a design pattern used in software engineering that is meant to decouple
an abstraction from its implementation so that the two can vary independently, introduced by
the Gang of Four. The bridge uses encapsulation, aggregation, and can use inheritance to
separate responsibilities into different classes.

 When a class varies often, the features of object-oriented programming become very useful
because changes to a program's code can be made easily with minimal prior knowledge about
the program.

 The bridge pattern is useful when both the class and what it does very often.

 The class itself can be thought of as the abstraction and what the class can do as
the implementation.

 The bridge pattern can also be thought of as two layers of abstraction.

 When there is only one fixed implementation, this pattern is known as the Pimpl idiom in
the C++ world.

 The bridge pattern is often confused with the adapter pattern, and is often implemented using
the object adapter pattern, e.g. in the Java code below.

 Variant: The implementation can be decoupled even more by deferring the presence of the
implementation to the point where the abstraction is utilized.

L‐16LECTURE HANDOUTS

II / III CSE

 Structure

Sample UML class and sequence diagram for the Bridge design pattern

 The above Unified Modeling Language class diagram, an abstraction isn't implemented as
usual in a single inheritance hierarchy.

 Instead, there is one hierarchy for an abstraction and a separate hierarchy for its
implementation , which makes the two independent from each other.

 The operation() interface is implemented in terms of by delegating to the interface
(impOperationImp()).
The UML sequence diagram shows the run-time interactions: The implementation1 object
delegates implementation to the implementor1 object by calling operationImp() on
Implementor1, which performs the operation and returns to abstraction1.

Video Content / Details of website for further learning (if any):
https://practice.geeksforgeeks.org/courses/design-patterns

Important Books/Journals for further learning including the page nos.:

James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference Manual,
Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture: Adapter, Behavioral

Introduction :
 Introduce a class to convert the interface of one component into another interface is called

adapter.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Software system blueprint

 Depict structures and relationship in complex object

Detailed content of the Lecture:
ADAPTER

 In software engineering, the adapter pattern is a software design pattern also known as
wrapper, an alternative naming shared with the decorator pattern that allows the interface of
an existing class to be used as another interface.

 It is often used to make existing classes work with others without modifying their source code.

 An adapter allows two incompatible interfaces to work together.

 This is the real-world definition for an adapter.

 Interfaces may be incompatible, but the inner functionality should suit the need.

 The adapter design pattern allows otherwise incompatible classes to work together by
converting the interface of one class into an interface expected by the clients.

 An adapter can be used when the wrapper must respect a particular interface and must
support polymorphic behavior.

 Alternatively, a decorator makes it possible to add or alter behavior of an interface at run-time,
and a facade is used when an easier or simpler interface to an underlying object is desired.

BEHAVIORAL

 UML behavioral diagrams visualize, specify, construct, and document the dynamic aspects of a
system.

L‐17 LECTURE HANDOUTS

II / III CSE

 The behavioral diagrams are categorized as follows:

 use case diagrams,

 interaction diagrams

 state–chart diagrams

 activity diagrams

1. Interactions Terms and Concepts Modeling Techniques

2. Interaction Diagrams Terms and Concepts Modeling Techniques

USE CASE DIAGRAMS

 Use case diagrams present an outside view of the manner the elements in a system behave and
how they can be used in the context.

 Use case diagrams comprise of −

 Use cases

 Actors

 Relationships like dependency, generalization, and association

Video Content / Details of website for further learning (if any):
https://practice.geeksforgeeks.org/courses/design-patterns

Important Books/Journals for further learning including the page nos.:

James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference
Manual, Addison Wesley,2005.

Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : II- Design Patterns Date of Lecture:

Topic of Lecture: Grasp- Strategy- observer

Introduction :
 Strategy lets the algorithm vary independently from clients that use it.
 Observer defines a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Observer pattern
 Strategy pattern

Detailed content of the Lecture:
Observer Pattern

 The observer pattern is a software design pattern in which an object, called the subject,
maintains a list of its dependents, called observers, and notifies them automatically of any state
changes, usually by calling one of their methods.

 It is mainly used to implement distributed event handling systems, in "event driven" software.
In those systems, the subject is usually called a "stream of events" or "stream source of events",
while the observers are called "sink of events".

 The stream nomenclature simulates or adapts to a physical setup where the observers are
physically separated and have no control over the emitted events of the subject/stream-source.

 This pattern then perfectly suits any process where data arrives through I/O, that is, where
data is not available to the CPU at startup, but can arrive "randomly" (HTTP requests, GPIO
data, user input from keyboard or mouse, distributed databases and blockchains .

 Most modern languages have built-in "event" constructs which implement the observer pattern
components.

 While not mandatory most 'observers' implementations will use background threads listening
for subject events and other support mechanism from the kernel Linux epoll.

 It addresses following problems:

 A one-to-many dependency between objects should be defined without making the objects
tightly coupled.

 It should be ensured that when one object changes state an open-ended number of dependent

L‐18

LECTURE HANDOUTS

CSE

objects are updated automatically.
 It should be possible that one object can notify an open-ended number of other objects.
 The Observer design pattern is one of the twenty-three well-known "Gang of Four" design

patterns that describe how to solve recurring design problems to design flexible and reusable
object-oriented software, that is, objects that are easier to implement, change, test, and reuse.

Strategy Pattern

 The strategy pattern (also known as the policy pattern) is a behavioral software design
pattern that enables selecting an algorithm at runtime.

 Instead of implementing a single algorithm directly, code receives run-time instructions as to
which in a family of algorithms to use.

 For instance, a class that performs validation on incoming data may use the strategy pattern to
select a validation algorithm depending on the type of data, the source of the data, user choice,
or other discriminating factors.

 These factors are not known until run-time and may require radically different validation to be
performed.

 The validation algorithms (strategies), encapsulated separately from the validating object, may
be used by other validating objects in different areas of the system (or even different systems)
without code duplication.

 This is compatible with the open/closed principle (OCP), which proposes that classes should
be open for extension but closed for modification.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=_BpmfnqjgzQ

Important Books/Journals for further learning including the page nos.:
James Rumbaugh Ivar Jacobson Grady Booch, The Unified Modelling Language Reference Manual,
Addison Wesley,2005.

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Case study – the Next Gen POS system

Introduction :
 A POS system is a computerized application used (in part) to record sales and handle

payments; it is typically used in a retail store.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Next Gen POS System

Detailed content of the Lecture:

Case Study: Next POS System

 In this apparently straightforward problem domain, we shall see that there are very
interesting requirement and design problems to solve. In addition, it is a realistic problem;
organizations really do write POS systems using object technologies.

 A POS system is a computerized application used (in part) to record sales and handle
payments; it is typically used in a retail store.

 It includes hardware components such as a computer and bar code scanner, and software
to run the system.

 It interfaces to various service applications, such as a third-party tax calculator and
inventory control.

User-Level Goals

The users (and external systems) need a system to fulfill these goals:

 Cashier: process sales, handle returns, cash in, cash out

 System administrator: manage users, manage security, manage system tables

 Manager: start up, shut down

 Sales activity system: analyze sales data

L ‐19LECTURE HANDOUTS

III / V CSE

Architectural Layers and Case Study Emphasis

A typical object-oriented information system is designed in terms of several architectural layers
or subsystems.

 User Interface—graphical interface; windows.
 Application Logic and Domain Objects—software objects representing domain concepts

(for example, a software class named Sale) that fulfill application requirements.
 Technical Services—general purpose objects and subsystems that provide supporting

technical services, such as interfacing with a database or error logging.
These services are usually application-independent and reusable across several systems

 OOA/D is generally most relevant for modeling the application logic and technical
service layers.

 The Next Gen case study primarily emphasizes the problem domain objects,
allocating responsibilities to them to fulfill the requirements of the application.

 Object-oriented design is also applied to create a technical service subsystem for
interfacing with a database.

 In this design approach, the UI layer has very little responsibility; it is said to be
thin. Windows do not contain code that performs application logic or processing.
Rather, task requests are forwarded on to other layers.

Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/case-studythe-next-gen-pos-system/

Important Books/Journals for further learning including the page nos.:

1. UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
2. Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,

Springer, 2015

 Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Inception -Use case Modeling

Introduction :
 Inception is about understanding the project scope and objectives and getting enough

information to confirm that the project should proceed - or to convince you that it should
not.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Phases of application workflow

Detailed content of the Lecture:

Objectives:

 Understand what to build: Determine an overall vision, including the scope of the system
and its boundaries. Identify the stakeholders: who is interested in this system and what
their success criteria are.

 Identify key system functionality: Decide which requirements are most critical.

 Determine at least one possible solution: Assess whether the vision is technically
feasible. This may involve identifying a candidate high-level architecture or doing
technical prototypes, or both.

 Understand the high-level estimate for cost, schedule, and risks associated with the
project.

Key considerations:

Projects may have one or more iterations in the Inception phase. These are among the reasons for
multiple iterations:

 Project is large, and it is hard to define its scope

 Unprecedented system

 Too many stakeholders with competing needs and complex relationships

 Major technical risks demand the creation of a prototype or proof of concept

Goals:
 To describe the initial requirements
 To develop and justify the business case for the system
 To determine the scope of your system
 To identify the people, organizations, and external systems that will interact with your

L‐20LECTURE HANDOUTS

III / V CSE

system
 To develop an initial risk assessment, schedule, and estimate for your system
 To develop an initial tailoring of the Unified Process to meet your exact needs

The essential activities of the inception phase are:
 Formulating the scope of the project. This involves capturing the context and the most

important requirements and constraints to such an extent that you can derive acceptance
criteria for the end product.

 Planning and preparing a business case. Evaluating alternatives for risk management,
staffing, project plan, and cost/schedule/profitability trade-offs.

 Synthesizing a candidate architecture, evaluating trade-offs in design, and in
make/buy/reuse, so that cost, schedule and resources can be estimated.

The outcome of the inception phase is:
 A vision document: a general vision of the core project's requirements, key features, main

constraints.
 The use-case model survey (identifying all use cases that can be identified at this early

stage).
 An initial glossary.
 An initial business case, which includes:.

 Success criteria (revenue projection, market recognition, and so on).
 Financial forecast.
 Business context

 An initial risk assessment.
 A project plan, showing phases, and iterations.

Video Content / Details of website for further learning (if any):
https://www.inceptiondesigns.com/CASE_HD_FOAM_p/gcl-005-cf.htm

Important Books/Journals for further learning including the page nos.:

 UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
 Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,

Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Relating Use cases

Introduction :
 An extend dependency, formerly called an extends relationship in UML v1. 2 and earlier, is a

generalization relationship where an extending use case continues the behavior of a base use
case.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Phases of application workflow
 Include
 Extend
 Generalization

Detailed content of the Lecture:

Extend Relationship Between Two Use Cases

Many people confuse the extend relationship in use cases. As the name implies it extends the base use
case and adds more functionality to the system. Here are a few things to consider when using the
<<extend>> relationship.

 The extending use case is dependent on the extended (base) use case. In the below diagram the
“Calculate Bonus” use case doesn’t make much sense without the “Deposit Funds” use case.

 The extending use case is usually optional and can be triggered conditionally. In the diagram,
you can see that the extending use case is triggered only for deposits over 10,000 or when the age
is over 55.

 The extended (base) use case must be meaningful on its own. This means it should be
independent and must not rely on the behavior of the extending use case.

L‐21 LECTURE HANDOUTS

III / V CSE

Include Relationship Between Two Use Cases

Include relationship show that the behavior of the included use case is part of the including (base) use
case. The main reason for this is to reuse common actions across multiple use cases. In some situations,
this is done to simplify complex behaviors. Few things to consider when using the <<include>>
relationship.

 The base use case is incomplete without the included use case.
 The included use case is mandatory and not optional.

Generalization of a Use Case

 This is similar to the generalization of an actor. The behavior of the ancestor is inherited by the
descendant.

 This is used when there is common behavior between two use cases and also specialized
behavior specific to each use case.

 Generalization of an actor means that one actor can inherit the role of the other actor. The
descendant inherits all the use cases of the ancestor.

Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/relating-use-cases-include-extend-and-generalization/
Important Books/Journals for further learning including the page nos.:

 UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
 Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,

Springer, 2015

 Course Faculty

 Verified by HOD

.

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Include, Extend and Generalization

Introduction :
 An extend dependency, formerly called an extends relationship in UML v1. 2 and earlier, is a

generalization relationship where an extending use case continues the behavior of a base use case.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Relating Use cases
 Include
 Extend
 Generalization

Detailed content of the Lecture:

Extend Relationship Between Two Use Cases

Many people confuse the extend relationship in use cases. As the name implies it extends the base use case
and adds more functionality to the system. Here are a few things to consider when using the <<extend>>
relationship.

 The extending use case is dependent on the extended (base) use case. In the below diagram the
“Calculate Bonus” use case doesn’t make much sense without the “Deposit Funds” use case.

 The extending use case is usually optional and can be triggered conditionally. In the diagram, you can
see that the extending use case is triggered only for deposits over 10,000 or when the age is over 55.

 The extended (base) use case must be meaningful on its own. This means it should be independent
and must not rely on the behavior of the extending use case.

L ‐22LECTURE HANDOUTS

III / V CSE

Include Relationship Between Two Use Cases

Include relationship show that the behavior of the included use case is part of the including (base) use case.
The main reason for this is to reuse common actions across multiple use cases. In some situations, this is done
to simplify complex behaviors. Few things to consider when using the <<include>> relationship.

 The base use case is incomplete without the included use case.
 The included use case is mandatory and not optional.

Generalization of a Use Case

 This is similar to the generalization of an actor. The behavior of the ancestor is inherited by the
descendant.

 This is used when there is common behavior between two use cases and also specialized behavior specific
to each use case.

 Generalization of an actor means that one actor can inherit the role of the other actor. The descendant
inherits all the use cases of the ancestor.

 The descendant has one or more use cases that are specific to that role. Let’s expand the previous use case
diagram to show the generalization of an actor.

Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-notes/lessons/relating-use-
cases-include-extend-and-generalization/

Important Books/Journals for further learning including the page nos.:

 UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
 Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath, Springer, 2015

 Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Elaboration Domain Models- Finding conceptual classes and description classes

Introduction :

 Conceptual class hierarchies are often inspiration for software class hierarchies that exploits
inheritance and reduce duplication of code.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Domain Model

Detailed content of the Lecture:

Uses of defining conceptual super classes and subclasses

 Defining is valuable to identify conceptual super and subclasses, it is useful to clearly and

precisely understand generalization, super classes, and subclasses in terms of class definition

and class sets.

Role of conceptual subclass and super classes in set membership

 Conceptual subclasses and super classes are related in terms of set membership.

 By definition, all members of a conceptual subclass set are members of their super class set.

 For example, in terms of set membership, all instances of the set Credit Payment are also

members of the set Payment.

L ‐23LECTURE HANDOUTS

III / V CSE

100% rule
100% of the conceptual Super class’s definition should be applicable to the subclass. The subclass must
conform to 100% of the Super class’s attributes and associations.

Guidelines followed in defining a super class

Create a super class in a generalization relationship to subclasses when :

 The potential conceptual subclasses represent variations of a similar concept
 The subclasses will confirm to the 100% and Is-A rules
 All subclasses have the same attribute that can be factored out and expressed in the super class
 All subclasses have the same association that can be factored out and related to the super class

Strong motivations to partition a conceptual class with subclasses

Create a conceptual subclass of a super class when :

 The subclass has additional attributes of interest
 The subclass has additional associations of interest
 The subclass concept is operated on, handled, reacted-to, or manipulated differently than the

super class or other subclasses
Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/finding-conceptual-class-hierarchies-in-ooad/
Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Associations – Attributes

Introduction :
 An association indicates that the system you are developing stores links of some kind between

the instances of the associated types.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Domain Model
 Associations
 Attributes

Detailed content of the Lecture:

Association

 Association is a group of links having common structure and common behavior. Association
depicts the relationship between objects of one or more classes.

 A link can be defined as an instance of an association.

Degree of an Association
Degree of an association denotes the number of classes involved in a connection. Degree may be unary,
binary, or ternary.

 A unary relationship connects objects of the same class.
 A binary relationship connects objects of two classes.
 A ternary relationship connects objects of three or more classes.

Cardinality Ratios of Associations
 One–to–One − A single object of class A is associated with a single object of class B.
 One–to–Many − A single object of class A is associated with many objects of class B.
 Many–to–Many − an object of class A may be associated with many objects of class B and

conversely an object of class B may be associated with many objects of class A.
Attributes

 A set of attributes for the objects that are to be instantiated from the class. Generally, different
objects of a class have some difference in the values of the attributes. Attributes are often
referred as class data.

 A set of operations that portray the behavior of the objects of the class. Operations are also
referred as functions or methods.

Domain Model Refinement
A domain model contains conceptual classes, associations between conceptual classes, and attributes of
a conceptual class. "Informally, a conceptual class is an idea, thing, or object".

L ‐24LECTURE HANDOUTS

III / V CSE

Generalization
Generalization is the process of extracting shared characteristics from two or more classes, and
combining them into a generalized super class. Shared characteristics can be attributes, associations, or
methods.

Specialization
Specialization means creating new subclasses from an existing class. If it turns out that certain
attributes, associations, or methods only apply to some of the objects of the class, a subclass can be
created. The most inclusive class in a generalization/specialization is called the super class and is
generally located at the top of the diagram. The more specific classes are called subclasses and are
generally placed below the super class.

Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/finding-conceptual-classes-and-description-classes-in-ooad/

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Domain model refinement

Introduction :
 A domain model is illustrated with a set of class diagrams in which no operations (method

signatures) are defined
Prerequisite knowledge for Complete understanding and learning of Topic:

 Associations
 Attributes
 Domain Model

Detailed content of the Lecture:
 A domain model is illustrated with a set of class diagrams in which no operations (method

signatures) are defined

Association

 Association is a group of links having common structure and common behavior. Association
depicts the relationship between objects of one or more classes.

 A link can be defined as an instance of an association.

Degree of an Association
Degree of an association denotes the number of classes involved in a connection. Degree may be
unary, binary, or ternary.

 A unary relationship connects objects of the same class.
 A binary relationship connects objects of two classes.
 A ternary relationship connects objects of three or more classes.

Cardinality Ratios of Associations
 One–to–One − A single object of class A is associated with a single object of class B.
 One–to–Many − A single object of class A is associated with many objects of class B.
 Many–to–Many − an object of class A may be associated with many objects of class B and

conversely an object of class B may be associated with many objects of class A.
Attributes

 A set of attributes for the objects that are to be instantiated from the class.
 Generally, different objects of a class have some difference in the values of the attributes.
 Attributes are often referred as class data.
 A set of operations that portray the behavior of the objects of the class.
 Operations are also referred as functions or methods.

Domain Model Refinement

L ‐25LECTURE HANDOUTS

III / V CSE

 A domain model contains conceptual classes, associations between conceptual classes, and
attributes of a conceptual class. "Informally, a conceptual class is an idea, thing, or object".

Generalization

 Generalization is the process of extracting shared characteristics from two or more classes, and
combining them into a generalized super class.

 Shared characteristics can be attributes, associations, or methods.

Specialization

 Specialization means creating new subclasses from an existing class.
 If it turns out that certain attributes, associations, or methods only apply to some of the objects

of the class, a subclass can be created.
 The most inclusive class in a generalization/specialization is called the super class and is

generally located at the top of the diagram.
 The more specific classes are called subclasses and are generally placed below the super class.

Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/finding-conceptual-classes-and-description-classes-in-ooad/

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Finding conceptual classes and description classes

Introduction :

 Conceptual class hierarchies are often inspiration for software class hierarchies that exploits
inheritance and reduce duplication of code.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Domain Model

Detailed content of the Lecture:

Uses of defining conceptual super classes and subclasses

 Defining is valuable to identify conceptual super and subclasses, it is useful to clearly and

precisely understand generalization, super classes, and subclasses in terms of class definition

and class sets.

Role of conceptual subclass and super classes in set membership

 Conceptual subclasses and super classes are related in terms of set membership.

 By definition, all members of a conceptual subclass set are members of their super class set.

 For example, in terms of set membership, all instances of the set Credit Payment are also

members of the set Payment.

L ‐26LECTURE HANDOUTS

III / V CSE

100% rule
100% of the conceptual Super class’s definition should be applicable to the subclass. The subclass must
conform to 100% of the Super class’s attributes and associations.

Guidelines followed in defining a super class

Create a super class in a generalization relationship to subclasses when :

 The potential conceptual subclasses represent variations of a similar concept
 The subclasses will confirm to the 100% and Is-A rules
 All subclasses have the same attribute that can be factored out and expressed in the super class
 All subclasses have the same association that can be factored out and related to the super class

Strong motivations to partition a conceptual class with subclasses

Create a conceptual subclass of a super class when :

 The subclass has additional attributes of interest
 The subclass has additional associations of interest
 The subclass concept is operated on, handled, reacted-to, or manipulated differently than the

super class or other subclasses
Video Content / Details of website for further learning (if any):
https://facultytalkies.com/courses/cs8592-object-oriented-analysis-and-design-
notes/lessons/finding-conceptual-class-hierarchies-in-ooad/
Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : III - CASE STUDY Date of Lecture:

Topic of Lecture: Aggregation and Composition

Introduction :

 Aggregation implies a relationship where the child can exist independently of the parent.
Example: Class (parent) and Student (child). Delete the Class and the Students still exist.

 Composition implies a relationship where the child cannot exist independent of the parent.
Example: House (parent) and Room (child).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Conceptual class hierarchy

Detailed content of the Lecture:

Aggregation (Shared Association)

 In cases where there’s a part-of relationship between Class A (whole) and Class B (part), we can
be more specific and use the aggregation link instead of the association link, taking special
notice that Class B can also be aggregated by other classes in the application (therefore
aggregation is also known as shared association).

 So basically, the aggregation link doesn’t state in any way that Class A owns Class B nor that

there is a parent-child relationship (when parent deleted all its child’s are being deleted as a
result) between the two.

 Actually, quite the opposite! The aggregation link usually used to stress the point that Class A
is not the exclusive container of Class B, as in fact Class B has another container.

Composition (Not-Shared Association)
 In cases where in addition to the part-of relationship between Class A and Class B - there’s a

strong life cycle dependency between the two, meaning that when Class A is deleted then Class

L ‐27LECTURE HANDOUTS

III / V CSE

B is also deleted as a result, we should be more specific and use the composition link instead of
the aggregation link or the association link.

 The composition link shows that a class (container, whole) has exclusive ownership over other
class/s (parts), meaning that the containers object and its parts constitute a parent-child/s
relationship.

 Unlike association and aggregation, in the composition relationship, the composed class cannot
appear as a return type or parameter type of the composite class, thus changes in the composed
class cannot be propagated to the rest of the system.

 Consequently, usage of composition limits complexity growth as the system grows.

Significance:

 Provides standard for software development.
 Reducing of costs to develop diagrams of UML using supporting tools.
 Development time is reduced.
 The past faced issues by the developers are no longer exists.
 Has large visual elements to construct and easy to follow.

Video Content / Details of website for further learning (if any):
https://www.infoworld.com/article/3029325/exploring-association-aggregation-and-composition-
in-oop.html

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: System sequence diagrams

Introduction :

 System sequence diagram (SSD) is a sequence diagram that shows, for a particular scenario of a
use case, the events that external actors generate, their order, and possible inter-system events.

Prerequisite knowledge for Complete understanding and learning of Topic:

 UML Diagrams

Detailed content of the Lecture:

Definition

 System sequence diagrams, also known as SSD, are actually a sub-type of sequence diagrams,
whose style and notation is dictated by the Unified Modeling Language.

 This language provides a toolkit for diagram creators to make and read diagrams that are
comprehensible regardless of location or industry.

 Standard sequence diagrams show the progression of events over a certain amount of time,
while system sequence diagrams go step further and present sequences for specific use cases.

Most elements we cover in use case diagrams remain in use throughout a system sequence diagram,
including:

 Objects - this box shape with an underlined title represents a class, or object, in UML. Within a
SSD, this shape models the system as a black box (a system with inner workings that are not
immediately visible).

 Actors - shown by stick figures, actors are entities that interact with the system, and yet are
external to it.

 Events - the system events that the actors generate in the sequence. A dashed line, known as a
lifeline, represents events in an SSD. Lifelines may begin with a labeled rectangle shape or an
actor symbol.

Benefits of system sequence diagrams

L ‐28LECTURE HANDOUTS

III / V CSE

SSDs are ideal for demonstrating when and how tasks are completed in a system, especially as those
tasks relate to use cases. Here are a few specific examples of when to use SSDs:

 In a step-wise fashion, modeling operations of the system in response to events.

 Building a blueprint for the main success scenario of a given use case, then creating alternative
paths.

 Identifying major system events and operations in order to come up with realistic estimates of
resources needed.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3VX3QpUuvfs

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: Relationship between sequence diagrams

Introduction :

 Sequence diagrams only specify the ordering of events and not the exact timings of events.
 An activation box represents the period during which an operation is executed.
 Shows interactions between objects in visual and chronological (time) order.

Prerequisite knowledge for Complete understanding and learning of Topic:
 UML Diagrams

Detailed content of the Lecture:

Use case relate to a sequence diagram

 A use-case model is built and the actors are connected to use cases.

 Each use case represents a task in which the actor participates.

 For each use case, a sequence diagram is built.

 Each sequence diagram specifies the main interaction steps to be achieved for each task (i.e. use
case).

Describing Use Cases By Means of Sequence Diagrams

 Regarding the model-driven development, we also show a discussion on how the development
process and, in general, the developer decisions affect both use-case modeling and sequence-
diagram modeling, in particular, the identification of use-case relationships.

Our technique can be summarized as follows.

 A use-case model is built and the actors are connected to use cases. Each use case represents a
task in which the actor participates.

 For each use case, a sequence diagram is built. Each sequence diagram specifies the main
interaction steps to be achieved for each task (i.e. use case).

 From the sequence diagrams, use-case relationships are identified. Sequence sub diagrams are
identified with new use cases.

 The sequence diagrams are refined: some interaction steps are added as extensions to the
original sequence diagrams. These extensions are represented as new sequence (sub)diagrams.

 These new sub diagrams are identified with new use cases.

L ‐29LECTURE HANDOUTS

III / V CSE

 From the refined sequence diagrams, new use-case relationships are discovered: new
generalization/ specialization and extension relationships.

 Generalization/ specialization relationships between abstract and particular use cases are
identified.

 Some of the previous steps might be applied incrementally in the development process.

 Combined Fragments

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3VX3QpUuvfs

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit :IV APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: Use cases

Introduction :

 To model a system, the most important aspect is to capture the dynamic behavior. Dynamic
behavior means the behavior of the system when it is running/operating.

 In UML, there are five diagrams available to model the dynamic nature and use case diagram is
one of them.

 Now as we have to discuss that the use case diagram is dynamic in nature, there should be some
internal or external factors for making the interaction.

Prerequisite knowledge for Complete understanding and learning of Topic:
 UML Diagrams
 Use cases

Detailed content of the Lecture:

 These internal and external agents are known as actors. Use case diagrams consists of actors, use
cases and their relationships.

 The diagram is used to model the system/subsystem of an application.

 A single use case diagram captures a particular functionality of a system.

 Hence to model the entire system, a number of use case diagrams are used.

PURPOSE OF USE CASE DIAGRAMS

 The purpose of use case diagram is to capture the dynamic aspect of a system.

 However, this definition is too generic to describe the purpose, as other four diagrams (activity,
sequence, collaboration, and Statechart) also have the same purpose.

 We will look into some specific purpose, which will distinguish it from other four diagrams.

When the initial task is complete, use case diagrams are modelled to present the outside view.

In brief, the purposes of use case diagrams can be said to be as follows −

 Used to gather the requirements of a system.

 Used to get an outside view of a system.

 Identify the external and internal factors influencing the system.

L‐30 LECTURE HANDOUTS

III / V CSE

 Show the interaction among the requirements are actors.

HOW TO DRAW A USE CASE DIAGRAM:

 Actors can be a human user, some internal applications, or may be some external applications.
When we are planning to draw a use case diagram, we should have the following items
identified.

 Functionalities to be represented as use case

 Actors

 Relationships among the use cases and actors.

 Use case diagrams are drawn to capture the functional requirements of a system. After
identifying the above items, we have to use the following guidelines to draw an efficient use
case diagram

 The name of a use case is very important. The name should be chosen in such a way so that it can
identify the functionalities performed.

 Give a suitable name for actors.

 Show relationships and dependencies clearly in the
diagram.

Use case diagrams can be used for −

 Requirement analysis and high level design.

 Model the context of a system.

 Reverse engineering.

 Forward engineering.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3VX3QpUuvfs

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath, Springer,
2015

 Course Faculty

 Verified by HOD

.

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit :IV -APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: Logical architecture

Introduction :

 Logical architecture is the large-scale organization of the software classes into packages (or
namespaces), subsystems, and layers.

 Logical - because there's no decision about how these elements are deployed across different
operating system processes or across physical computers in a network
(deployment architecture).

Prerequisite knowledge for Complete understanding and learning of Topic:
 UML Diagrams
 Logical architecture

Detailed content of the Lecture:

 Any real-world system is used by different users. The users can be developers, testers, business
people, analysts, and many more.

 Hence, before designing a system, the architecture is made with different perspectives in mind.

 The most important part is to visualize the system from the perspective of different viewers.
The better we understand the better we can build the system.

UML plays an important role in defining different perspectives of a system. These perspectives are −

 Design

 Implementation

 Process

 Deployment

The center is the Use Case view which connects all these four.

A Use Case represents the functionality of the system. Hence, other perspectives are connected with
use case.

Design of a system consists of classes, interfaces, and collaboration.

L‐31 LECTURE HANDOUTS

III / V CSE

UML provides class diagram, object diagram to support this.

Implementation defines the components assembled together to make a complete physical system.
UML component diagram is used to support the implementation perspective.

Process defines the flow of the system. Hence, the same elements as used in Design are also used to
support this perspective.

Deployment represents the physical nodes of the system that forms the hardware. UML deployment
diagram is used to support this perspective.

It is very important to distinguish between the UML model. Different diagrams are used for different
types of UML modeling. There are three important types of UML modeling.

STRUCTURAL MODELING

Structural modeling captures the static features of a system. They consist of the following −

 Classes diagrams

 Objects diagrams

 Deployment diagrams

 Package diagrams

 Composite structure diagram

 Component diagram

Structural model represents the framework for the system and this framework is the place where all
other components exist. Hence, the class diagram, component diagram and deployment diagrams are
part of structural modeling. They all represent the elements and the mechanism to assemble them.

The structural model never describes the dynamic behavior of the system. Class diagram is the most
widely used structural diagram.

BEHAVIORAL MODELING

Behavioral model describes the interaction in the system. It represents the interaction among the
structural diagrams. Behavioral modeling shows the dynamic nature of the system. They consist of
the following −

 Activity diagrams

 Interaction diagrams

 Use case diagrams

All the above show the dynamic sequence of flow in a system.

ARCHITECTURAL MODELING

Architectural model represents the overall framework of the system. It contains both structural and
behavioral elements of the system. Architectural model can be defined as the blueprint of the entire
system. Package diagram comes under architectural modeling.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=3VX3QpUuvfs

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: UML package diagram

Introduction :

 Package diagram is UML structure diagram which shows structure of the designed system
at the level of packages. The following elements are typically drawn in a package diagram:
package, packageable element, dependency, element import, package import, package
merge.

Prerequisite knowledge for Complete understanding and learning of Topic:

 UML Diagrams

Detailed content of the Lecture:

Package

 Package is a namespace used to group together elements that are semantically related and
might change together.

 It is a general purpose mechanism to organize elements into groups to provide better
structure for system model.

 Owned members of a package should all be packageable elements.

 If a package is removed from a model, so are all the elements owned by the package.

 Package by itself is packageable element, so any package could be also a member of other
packages.

L‐32 LECTURE HANDOUTS

III / V CSE

Package Template

Logical Architecture And Layers

 Logical architecture is the large-scale organization of the software classes into packages (or
namespaces), subsystems, and layers.

 Logical - because there's no decision about how these elements are deployed across
different operating system processes or across physical computers in a network
(deployment architecture).

Layering Pattern

 A layer is a very coarse-grained grouping of classes, packages, or subsystems that has
cohesive responsibility for a major aspect of the system.

 Also, layers are organized such that "higher" layers (such as the UI layer) call upon
services of "lower" layers, but not normally vice versa.

 Strict layered architecture VS Relaxed Layered Architecture.

 A logical architecture doesn't have to be organized in layers.

 But it's very common, and hence, introduced at this time.

Typical Layers Typically layers in an OO system

 User Interface.

 Application Logic and Domain Objects software objects representing domain concepts (for
example, a software class Sale) that fulfill application requirements, such as calculating a
sale total. .

Video Content / Details of website for further learning (if any):
https://medium.com/@warren2lynch/uml-what-is-package-diagram-how-to-use-it-
dbd317c07d5d

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: Logical architecture refinement

Introduction :

 Package diagram is UML structure diagram which shows structure of the designed system at
the level of packages.

 The following elements are typically drawn in a package diagram: package, packageable
element, dependency, element import, package import, package merge.

Prerequisite knowledge for Complete understanding and learning of Topic:

 UML Diagrams
 UML package diagram

Detailed content of the Lecture:

Package

 Package is a namespace used to group together elements that are semantically related and
might change together.

 It is a general purpose mechanism to organize elements into groups to provide better structure
for system model.

 Owned members of a package should all be packageable elements.

 If a package is removed from a model, so are all the elements owned by the package.

 Package by itself is packageable element, so any package could be also a member of other
packages.

L ‐33 LECTURE HANDOUTS

III / V CSE

Package Template

Logical Architecture And Layers

 Logical architecture is the large-scale organization of the software classes into packages (or
namespaces), subsystems, and layers.

 Logical - because there's no decision about how these elements are deployed across different
operating system processes or across physical computers in a network (deployment
architecture).

Layering Pattern

 A layer is a very coarse-grained grouping of classes, packages, or subsystems that has cohesive
responsibility for a major aspect of the system.

 Also, layers are organized such that "higher" layers (such as the UI layer) call upon services of
"lower" layers, but not normally vice versa.

 Strict layered architecture VS Relaxed Layered Architecture.

 A logical architecture doesn't have to be organized in layers.

 But it's very common, and hence, introduced at this time.

Typical Layers Typically layers in an OO system

 User Interface.

 Application Logic and Domain Objects software objects representing domain concepts (for
example, a software class Sale) that fulfill application requirements, such as calculating a sale
total. .

Video Content / Details of website for further learning (if any):
https://medium.com/@warren2lynch/uml-what-is-package-diagram-how-to-use-it-dbd317c07d5d

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath, Springer,
2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV -APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: UML class diagrams

Introduction :

 Class diagram in the Unified Modeling Language is a type of static structure diagram that
describes the structure of a system by showing the system's classes, their attributes, operations,
and the relationships among objects.

Prerequisite knowledge for Complete understanding and learning of Topic:

 UML Diagrams

Detailed content of the Lecture:

Purpose of Class Diagrams

 The purpose of class diagram is to model the static view of an application.

 Class diagrams are the only diagrams which can be directly mapped with object-oriented
languages and thus widely used at the time of construction.

The purpose of the class diagram can be summarized as −

 Analysis and design of the static view of an application.

 Describe responsibilities of a system.

 Base for component and deployment diagrams.

 Forward and reverse engineering.

Where to Use Class Diagrams

Class diagrams are used for −

 Describing the static view of the system.

 Showing the collaboration among the elements of the static view.

 Describing the functionalities performed by the system.

 Construction of software applications using object oriented languages.

Draw a Class Diagram

The following points should be remembered while drawing a class diagram −

L ‐34LECTURE HANDOUTS

III / V CSE

 The name of the class diagram should be meaningful to describe the aspect of the system.

 Each element and their relationships should be identified in advance.

 Responsibility (attributes and methods) of each class should be clearly identified

 For each class, minimum number of properties should be specified, as unnecessary properties
will make the diagram complicated.

 Use notes whenever required to describe some aspect of the diagram.

 At the end of the drawing it should be understandable to the developer/coder.

 Finally, before making the final version, the diagram should be drawn on plain paper and
reworked as many times as possible to make it correct.

Video Content / Details of website for further learning (if any):
https://www.edx.org/course/uml-class-diagrams-for-software-engineering

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: UML interaction diagrams

Introduction :

 Interaction Overview Diagram is one of the fourteen types of diagrams of the Unified Modeling
Language, which can picture a control flow with nodes that can contain interaction diagrams.

 The interaction overview diagram is similar to the activity diagram, in that both visualize a
sequence of activities.

Prerequisite knowledge for Complete understanding and learning of Topic:

 UML Diagrams

Detailed content of the Lecture:

Purpose of Interaction Diagrams

 The purpose of interaction diagrams is to visualize the interactive behavior of the system.
Visualizing the interaction is a difficult task.

 Hence, the solution is to use different types of models to capture the different aspects of the
interaction.

The purpose of interaction diagram is −

 To capture the dynamic behavior of a system.

 To describe the message flow in the system.

 To describe the structural organization of the objects.

 To describe the interaction among objects.

Where to Use Interaction Diagrams

Interaction diagrams can be used −

 To model the flow of control by time sequence.

 To model the flow of control by structural organizations.

 For forward engineering.

 For reverse engineering.

Draw an Interaction Diagram

Following things are to be identified clearly before drawing the interaction diagram

L‐35 LECTURE HANDOUTS

III / V CSE

 Objects taking part in the interaction.

 Message flows among the objects.

 The sequence in which the messages are flowing.

 Object organization.

The Sequence Diagram

The sequence diagram has four objects (Customer, Order, SpecialOrder and NormalOrder).

The Collaboration Diagram

 In the collaboration diagram, the method call sequence is indicated by some numbering
technique.

 The number indicates how the methods are called one after another. We have taken the same
order management system to describe the collaboration diagram.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=Ba7SyM78cUM

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : IV- APPLYING DESIGN PATTERNS Date of Lecture:

Topic of Lecture: UML interaction diagrams

Introduction :

 Interaction Overview Diagram is one of the fourteen types of diagrams of the Unified Modeling
Language, which can picture a control flow with nodes that can contain interaction diagrams.

 The interaction overview diagram is similar to the activity diagram, in that both visualize a
sequence of activities.

Prerequisite knowledge for Complete understanding and learning of Topic:
 UML Diagrams

Detailed content of the Lecture:

INTERACTION DIAGRAMS

 The main purpose of both the diagrams are similar as they are used to capture the dynamic
behavior of a system.

 However, the specific purpose is more important to clarify and understand.

 Sequence diagrams are used to capture the order of messages flowing from one object to
another.

 Collaboration diagrams are used to describe the structural organization of the objects taking
part in the interaction.

 A single diagram is not sufficient to describe the dynamic aspect of an entire system, so a set of
diagrams are used to capture it as a whole.

 Interaction diagrams are used when we want to understand the message flow and the
structural organization.

 Message flow means the sequence of control flow from one object to another. Structural
organization means the visual organization of the elements in a system.

Interaction diagrams can be used −

 To model the flow of control by time sequence.

L ‐36LECTURE HANDOUTS

III / V CSE

 To model the flow of control by structural organizations.

 For forward engineering.

 For reverse engineering.

The Sequence Diagram

The sequence diagram has four objects (Customer, Order, SpecialOrder and NormalOrder).

STATECHART DIAGRAM

Statechart diagrams are very important for describing the states.

Before drawing a Statechart diagram we should clarify the following points −

 Identify the important objects to be analyzed.

 Identify the states.

 Identify the events.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=Ba7SyM78cUM
Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Applying GoF

Introduction :
 Design patterns represent the best practices used by experienced object-oriented software

developers.
 Program to an interface not an implementation
 Favor object composition over inheritance

Prerequisite knowledge for Complete understanding and learning of Topic:
 Design patterns
 UML Diagrams

Detailed content of the Lecture:
Gang of Four (GOF)

 In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides
published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which
initiated the concept of Design Pattern in Software development.

 These authors are collectively known as Gang of Four (GOF).
 According to these authors design patterns are primarily based on the following principles of

object orientated design.
 Program to an interface not an implementation
 Favor object composition over inheritance

Usage of Design Pattern

 Design patterns provide a standard terminology and are specific to particular scenario.

 For example, a singleton design pattern signifies use of single object so all developers familiar
with single design pattern will make use of single object and they can tell each other that
program is following a singleton pattern.

 Design patterns have been evolved over a long period of time and they provide best solutions
to certain problems faced during software development.

 Learning these patterns helps un-experienced developers to learn software design in an easy
and faster way.

Types of Design Pattern

Creational Patterns-

 These design patterns provides way to create objects while hiding the creation logic, rather

L‐37 LECTURE HANDOUTS

III / V CSE

than instantiating objects directly using new operator.

 This gives program more flexibility in deciding which objects need to be created for a given
use case.

Structural Patterns-

 These design patterns concern class and object composition. Concept of inheritance is used to
compose interfaces and define ways to compose objects to obtain new functionalities.

Behavioral Patterns-

 These design patterns are specifically concerned with communication between objects.

J2EE Patterns-

 These design patterns are specifically concerned with the presentation tier. These patterns are
identified by Sun Java Center.

Video Content / Details of website for further learning (if any):
https://www.linkedin.com/learning/java-ee-design-patterns-and-architecture/classic-gof-software-
design-patterns

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Design patterns

Introduction :

 Design patterns represent the best practices used by experienced object-oriented software
developers.

 Design patterns are solutions to general problems that software developers faced during
software development.

 These solutions were obtained by trial and error by numerous software developers over quite a
substantial period of time.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Design patterns
 UML Diagrams

Detailed content of the Lecture:

Usage of Design Pattern

 Design patterns provide a standard terminology and are specific to particular scenario.

 Design patterns have been evolved over a long period of time and they provide best solutions
to certain problems faced during software development.

 Learning these patterns helps un-experienced developers to learn software design in an easy
and faster way.

Types of Design Pattern

Creational Patterns-

 These design patterns provides way to create objects while hiding the creation logic, rather than
instantiating objects directly using new operator.

 This gives program more flexibility in deciding which objects need to be created for a given use
case.

Structural Patterns-

 These design patterns concern class and object composition.

 Concept of inheritance is used to compose interfaces and define ways to compose objects to
obtain new functionalities.

L‐38LECTURE HANDOUTS

III / V CSE

Behavioral Patterns-

 These design patterns are specifically concerned with communication between objects.

J2EE Patterns-

 These design patterns are specifically concerned with the presentation tier.

 These patterns are identified by Sun Java Center.

 Factory pattern is one of the most used design patterns in Java. This type of design pattern
comes under creational pattern as this pattern provides one of the best ways to create an object.

 In Factory pattern, we create object without exposing the creation logic to the client and refer to
newly created object using a common interface.

IMPLEMENTATION

Video Content / Details of website for further learning (if any):
https://www.linkedin.com/learning/java-ee-design-patterns-and-architecture/classic-gof-software-
design-patterns
Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Mapping design to code

Introduction :

 Mapping from Design to Code. Each class in design is implemented by coding it in a
programming language or by using a pre-existing component

Prerequisite knowledge for Complete understanding and learning of Topic:

 GoF Patterns
 UML Diagrams

Detailed content of the Lecture:

Programming and Iterative, Evolutionary Development

 The creation of code in an OO programming language is not a part of OOAD, is an end goal
 The artifacts created in the UP Design Model provide some of the information necessary to

generate the code
 Roadmap to software development

 OOAD - logical solution, blueprints
 OOP - running applications
 Use case - requirements

Creativity and Change During Implementation

 OOAD produces a base for the application
 Scales up with elegances
 Robustness

 Code Changes are inevitable
 CASE Tools, and Reverse-Engineering
 Rational ROSE, or Borland Together

Mapping Designs to Code
Implementation in an OO programming language requires writing source code for

 Classes and interface definitions
 methods definition

Creating Class Definitions from DCDs

L‐39 LECTURE HANDOUTS

III / V CSE

 This is sufficient to create a basic class definition in a OO language.
 If the DCD was drawn in a UML tool, it can generate the basic class definition from the

diagrams.
DCDs depict some of the basic elements of a class or interface

 Name
 Superclass
 Operation signatures
 attributes

Defining a Class with Methods and Attributes
From the DCD, a mapping to the attributes (Java fields) and method signatures is straightforward.

Video Content / Details of website for further learning (if any):
https://study.com/academy/lesson/mapping-code-using-outlines-and-flow-charts.html

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Mapping design to code

Introduction :

 Mapping from Design to Code. Each class in design is implemented by coding it in a
programming language or by using a pre-existing component

Prerequisite knowledge for Complete understanding and learning of Topic:

 GoF Patterns
 UML Diagrams

Detailed content of the Lecture:

Programming and Iterative, Evolutionary Development

 The creation of code in an OO programming language is not a part of OOAD, is an end goal
 The artifacts created in the UP Design Model provide some of the information necessary to

generate the code
 Roadmap to software development

 OOAD - logical solution, blueprints
 OOP - running applications
 Use case - requirements

Creativity and Change During Implementation

 OOAD produces a base for the application
 Scales up with elegances
 Robustness

 Code Changes are inevitable
 CASE Tools, and Reverse-Engineering
 Rational ROSE, or Borland Together

Mapping Designs to Code
Implementation in an OO programming language requires writing source code for

 Classes and interface definitions
 methods definition

Creating Class Definitions from DCDs

L ‐40LECTURE HANDOUTS

III / V CSE

 This is sufficient to create a basic class definition in a OO language.
 If the DCD was drawn in a UML tool, it can generate the basic class definition from the

diagrams.
DCDs depict some of the basic elements of a class or interface

 Name
 Superclass
 Operation signatures
 attributes

Defining a Class with Methods and Attributes
From the DCD, a mapping to the attributes (Java fields) and method signatures is straightforward.

Video Content / Details of website for further learning (if any):
https://study.com/academy/lesson/mapping-code-using-outlines-and-flow-charts.html

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Testing: Issues in OO Testing

Introduction :

 Issues in Object oriented testing: Traditional testing methods are not directly applicable to
OO programs as they involve OO concepts including encapsulation, inheritance, and
polymorphism. These concepts lead to issues, which are yet to be resolved

Prerequisite knowledge for Complete understanding and learning of Topic:

 Mapping Design to Code

Detailed content of the Lecture:

Definition

 Software typically undergoes many levels of testing, from unit testing to system or acceptance
testing.

 Typically, in-unit testing, small “units”, or modules of the software, are tested separately with
focus on testing the code of that module.

 In higher, order testing (e.g., acceptance testing), the entire system (or a subsystem) is tested
with the focus on testing the functionality or external behavior of the system.

Issues in Testing Classes:
 In object-oriented programs, control flow is characterized by message passing among objects,

and the control flow switches from one object to another by inter-object communication.
 Consequently, there is no control flow within a class like functions.
 This lack of sequential control flow within a class requires different approaches for testing.

Techniques of object-oriented testing

 Fault Based Testing:
 This type of checking permits for coming up with test cases supported the consumer
specification or the code or both.
 It tries to identify possible faults (areas of design or code that may lead to errors.). For all
of these faults, a test case is developed to “flush” the errors out.
 These tests also force each time of code to be executed.
 This method of testing does not find all types of errors.

L‐41LECTURE HANDOUTS

III / V CSE

 Class Testing Based on Method Testing:
 This approach is the simplest approach to test classes.
 Each method of the class performs a well defined cohesive function and can, therefore, be
related to unit testing of the traditional testing techniques.
 Therefore all the methods of a class can be involved at least once to test the class.

 Random Testing:
 It is supported by developing a random test sequence that tries the minimum variety of
operations typical to the behavior of the categories

 Partition Testing:
 This methodology categorizes the inputs and outputs of a category so as to check them
severely.
 This minimizes the number of cases that have to be designed.

 Scenario-based Testing:
 It primarily involves capturing the user actions then stimulating them to similar actions
throughout the test.
 These tests tend to search out interaction form of error.

Video Content / Details of website for further learning (if any):
https://slideplayer.com/slide/7780236/

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: Class Testing

Introduction :

 Class testing is the base of object-oriented software testing. It involves three aspects: testing
each method, testing the relations among class methods and testing the inheriting relation
between class and subclass.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Issues in OO Testing

Detailed content of the Lecture:

Unit

 The smallest chunk that can be compiled by itself
 A single method that does not call use other methods
 Something small enough to be developed by one person

When units are methods
 Simplistic view reduces to traditional procedural unit testing

 Apply functional and structural test methods
 Require drivers and stubs

 Encapsulation advantage
 Methods are simple

 Encapsulation disadvantage
 Interface complexity is high
 Intense message sending
 Lots of work building stubs and drivers

 Burden of testing moves to integration level
 Intraclass

 Interclass

When units are classes

 Solves intraclass integration problem
 Different views

Static view – class text

L‐42LECTURE HANDOUTS

III / V CSE

Ignores inheritance
Good only for reading
Compile-time view
When inheritance occurs
Execution view
Behavioral view – class are instantiated
This is where testing occurs

 Cannot test abstract classes
 Cannot be instantiated
 Choices

Classes flattened for testing
Need to unflatten when testing is completed
Use inherited classes

 Configuration management nightmare
 Make most sense when

 Little inheritance occurs
 Intraclass control complexity
 Interesting statechart

Video Content / Details of website for further learning (if any):
https://slideplayer.com/slide/7780236/

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

 Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: OO Integration Testing

Introduction :

 Integration Testing: This involves testing a particular module or a subsystem and is the
responsibility of the subsystem lead.

Prerequisite knowledge for Complete understanding and learning of Topic:
 OO Testing

Detailed content of the Lecture:
Integration Testing

 It is defined as a type of testing where software modules are integrated logically and tested as a
group.

 A typical software project consists of multiple software modules, coded by different
programmers.

 The purpose of this level of testing is to expose defects in the interaction between these software
modules when they are integrated

Approaches, Strategies, Methodologies of Integration Testing
Software Engineering defines variety of strategies to execute Integration testing, viz.

 Big Bang Approach :
 Incremental Approach: which is further divided into the following

 Top Down Approach
 Bottom Up Approach
 Sandwich Approach - Combination of Top Down and Bottom Up
Big Bang Approach:
 Here all component are integrated together at once and then tested.

L‐43 LECTURE HANDOUTS

III / V CSE

 Advantages:
 Convenient for small systems.
Incremental Approach

 In this approach, testing is done by joining two or more modules that are logically related.
 Then the other related modules are added and tested for the proper functioning.
 The process continues until all of the modules are joined and tested successfully.

Stub: Is called by the Module under Test.
Driver: Calls the Module to be tested.
Bottom-up Integration

 In the bottom-up strategy, each module at lower levels is tested with higher modules until all
modules are tested. It takes help of Drivers for testing.

Top-down Integration:
 In Top to down approach, testing takes place from top to down following the control flow of

the software system.
 Takes help of stubs for testing.

Hybrid/ Sandwich Integration
 In the sandwich/hybrid strategy is a combination of Top Down and Bottom up approaches.

Guidelines for Integration Testing
 First, determine the Integration Test Strategy that could be adopted and later prepare the test

cases and test data accordingly.
 Study the Architecture design of the Application and identify the Critical Modules.
 These need to be tested on priority.
 Obtain the interface designs from the Architectural team and create test cases to verify all of the

interfaces in detail.
 Interface to database/external hardware/software application must be tested in detail.
 After the test cases, it's the test data which plays the critical role.
 Always have the mock data prepared, prior to executing.
 Do not select test data while executing the test cases.

Video Content / Details of website for further learning (if any):
https://www.guru99.com/integration-testing.html

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015

Course Faculty

 Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: GUI Testing- OO System Testing

Introduction :

 GUI testing is defined as the process of testing the system's Graphical User Interface of the
Application Under Test.

 GUI testing involves checking the screens with the controls like menus, buttons, icons, and all
types of bars - toolbar, menu bar, dialog boxes, and windows, etc.

Prerequisite knowledge for Complete understanding and learning of Topic:
 OO Testing
 Testing
 GUI

Detailed content of the Lecture:

Graphical User Interface Testing (GUI) Testing

 Graphical User Interface Testing (GUI) Testing is the process for ensuring proper functionality
of the graphical user interface (GUI) for a specific application.

 GUI testing generally evaluates a design of elements such as layout, colors and also fonts, font
sizes, labels, text boxes, text formatting, captions, buttons, lists, icons, links and content.

Feature of Graphical User Interface Testing (GUI):
 It is provide customizable test report.
 It is run tests in parallel or distribute on a Selenium Grid with built-in Selenium Web
 driver.
 It allows you to test the functionality from a user’s perspective.
 Sometimes the internal functions of the system work correctly but the user interface doesn’t

then GUI testing is good to have in addition to the other types.
 It provide reliable object identification, even for web elements with dynamic IDs.

Types of Graphical User Interface Testing (GUI) Testing:
 Analog Recording
 Object based Recording

Challenges with Graphical User Interface Testing (GUI) Testing:
 Technology Support
 Stability of Objects
 Instrumentation

L‐44 LECTURE HANDOUTS

III / V CSE

 GUI testing is a testing technique in which the application's user interface is tested whether the
application performs as expected with respect to user interface behaviour.

 GUI Testing includes the application behaviour towards keyboard and mouse movements and
how different GUI objects such as toolbars, buttons, menubars, dialog boxes, edit fields, lists,
behavior to the user input.

GUI TESTING GUIDELINES

 Check Screen Validations

 Verify All Navigations

 Check usability Conditions

 Verify Data Integrity

 Verify the object states

 Verify the date Field and Numeric Field Formats

CHALLENGES WITH GRAPHICAL USER INTERFACE TESTING (GUI) TESTING:

There is some challenge which is occurring during Graphical user interface testing.

These are given below.

 Technology Support

 Stability of Objects

 Instrumentation

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=1R3vsu_7n0E

Important Books/Journals for further learning including the page nos.:

UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015[24-32]

 Course Faculty

Verified by HOD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram ‐ 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 16CSD06 & OBJECT ORIENTED ANALYSIS AND DESIGN

Course Faculty :

Year / Semester/Section : III / V/ A

Unit : V- CODING AND TESTING Date of Lecture:

Topic of Lecture: GUI Testing- OO System Testing

Introduction :

 GUI testing is defined as the process of testing the system's Graphical User Interface of the
Application Under Test.

 GUI testing involves checking the screens with the controls like menus, buttons, icons, and all
types of bars - toolbar, menu bar, dialog boxes, and windows, etc.

Prerequisite knowledge for Complete understanding and learning of Topic:
 OO Testing
 Testing
 GUI

Detailed content of the Lecture:
System Testing

 System testing is a level of testing that validates the complete and fully integrated software
product.

 The purpose of a system test is to evaluate the end-to-end system specifications.
 Usually, the software is only one element of a larger computer-based system.

System Testing is Blackbox
 Two Category of Software Testing

 Black Box Testing
 White Box Testing

 System test falls under the black box testing category of software testing.
 White box testing is the testing of the internal workings or code of a software application.

Different Types of System Testing
 Usability Testing- mainly focuses on the user's ease to use the application, flexibility in

handling controls and ability of the system to meet its objectives
 Load Testing- is necessary to know that a software solution will perform under real-life loads.
 Regression Testing- involves testing done to make sure none of the changes made over the

course of the development process have caused new bugs.
 It also makes sure no old bugs appear from the addition of new software modules over time.
 Recovery testing - is done to demonstrate a software solution is reliable, trustworthy and can

successfully recoup from possible crashes.
 Migration testing- is done to ensure that the software can be moved from older system

L‐45 LECTURE HANDOUTS

III / V CSE

infrastructures to current system infrastructures without any issues.
 Functional Testing - Also known as functional completeness testing, Functional Testing

involves trying to think of any possible missing functions.
 Testers might make a list of additional functionalities that a product could have to improve it

during functional testing.
 Hardware/Software Testing - IBM refers to Hardware/Software testing as "HW/SW Testing".
 This is when the tester focuses his/her attention on the interactions between the hardware and

software during system testing.

 System Testing (ST) is a black box testing technique performed to evaluate the complete system
the system's compliance against specified requirements.

 In System testing, the functionalities of the system are tested from an end-to-end perspective.

 System Testing is usually carried out by a team that is independent of the development team in
order to measure the quality of the system unbiased.

 It includes both functional and Non-Functional testing.

Types of System Tests:

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=1R3vsu_7n0E

Important Books/Journals for further learning including the page nos.:
UML Distilled, Abraham Martin Fowler, PHI/Pearson Education, 2007
Object-Oriented Analysis, Design and Implementation, Brahma Dathan, Sarnath Ramnath,
Springer, 2015[51-59]

 Course Faculty

 Verified by HOD

