

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: Introduction

Introduction :

 Data structure defines a way of organizing all data items that consider not

only the elements stored but also stores the relationship between the

elements.

 Data structure can divide with two types: linear and non-linear structure.

Prerequisite knowledge for Complete understanding and learning of Topic:

 One Programming language (C/C++)

 Knowledge on array, pointer and recursion

Detailed content of the Lecture:

Data Structure: An arrangement of data in a computer's memory or Way of organizing data in a computer so

that it can be used effectively. In general data structure types include the file, array, record, table, tree.etc..

Classification of Data Structure:

 Static data structures.: A data structure formed when the number of data items are known in advance is

referred as static data structure or fixed size data structure..EX: Array, pointers, structures, etc.,

 Dynamic data structures: A data structure formed when the number of data items are not known

in advance is known as dynamic data structure or variable size data structure. Ex: linked lists,

stacks, queues, trees

Types of data structure

 Linear data structure.

 Non-linear data structure

Linear data structures:

 Linear data structures, where the data are arranged in sequential order or the data having a linear

relationship between its adjacent elements. Linked lists are examples of linear data structures.eg linked

list, array

Anu Abirami Arun Babu Balaji Gowtham

L-1
LECTURE HANDOUTS

II/III AI&DS

 Non-linear data structures:

 Non-linear data structures are data structures that don’t have a linear relationship between its adjacent

elements but have a hierarchical relationship between the elements. Trees and graphs are examples of

non-linear data structures. Eg: Tree , Graph

Primitive Data Types
Each variable has a specific data typeIt tells - size, range and the type of a value that can be stored in a

variable.

There are 4 basic primitive data types

 integer data types, such as short, int, long

 floating-point data types, such as float, double

 character data type, such as char

 Pointer

Abstract Data Type

An abstract data type is a set of operations for which the implementation of the data structure is not

specified anywhere in the program.

Basic Terminologies :

 Data: Data are simply values or sets of values.

 Data items: Data items refers to a single unit of values.

 Data items that are divided into sub-items are called Group items. Ex: An Employee Name may be

divided into three subitems- first name, middle name, and last name. Data items that are not able to

divide into sub-items are called Elementary items. Ex: SSN

 Entity: An entity is something that has certain attributes or properties which may be assigned

values. The values may be either numeric or non-numeric. Ex: Attributes- Names, Age, Sex, SSN

Values- Rohland Gail, 34, F, 134-34-5533 Entities with similar attributes form an entity set.

o Each attribute of an entity set has a range of values, the set of all possible values that could be

assigned to the particular attribute. The term “information” is sometimes used for data with

given attributes, of, in other words meaningful or processed data.

 Field: Field is a single elementary unit of information representing an attribute of an entity.

 Record: Record is the collection of field values of a given entity.

 File: File is the collection of records of the entities in a given entity set.

Applications of data structures

 Arranging similar types of books in a library based on their titles.

 Noise removal filters in an audio recording use arrays.

 Two-dimensional arrays which are generally called Matrices are mainly used in image processing.

 In Speech Processing, each speech signal is an array of Signal amplitude.

 A question Paper is also an array of numbered questions that are assigned with some marks.

 Playfair-cipher, an old algorithm used for encryption also uses a 2D array of

alphabets as key to encrypt/decrypt text

Video Content / Details of website for further learning (if any):
https://youtu.be/zWg7U0OEAoE

https://nptel.ac.in/courses/106/102/106102064/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C, Pearson India,2012- page nos: 1-6

 Course Teacher

 Verified by HOD

https://youtu.be/zWg7U0OEAoE
https://nptel.ac.in/courses/106/102/106102064/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: Data Structure Operations

Introduction :

Data structure is a representation of data and the operations allowed on that data.It is a way to store and

 organize data in order to facilitate the access and modifications.

 Data Structure are the method of representing of logical relationships between individual data

 elements related to the solution of a given problem.

 Insertion

 Deletion

 Traversal

Prerequisite knowledge for Complete understanding and learning of Topic:

 Basic Terminologies

 Elementary Data Organizations

 Data Structures

Detailed content of the Lecture:
 Insertion:

 Insertion means addition of a new data element in a data structure.

Deletion:

 Deletion means removal of a data element from a data structure if it is found.

Searching:

 Searching involves searching for the specified data element in a data structure.

Traversal:

 Traversal of a data structure means processing all the data elements present in it.

Sorting:

 Arranging data elements of a data structure in a specified order is called sorting.

Merging:

 Combining elements of two similar data structures to form a new data structure of the same

type, is called merging

L- 2
LECTURE HANDOUTS

II/III AI&DS

Advantages

 It can hold variables of different data types.

 create objects containing different types of attributes.

 It allows us to re-use the data layout across programs.

Video Content / Details of website for further learning (if any):
https://nptel.ac.in/courses/106104128/

https://www.youtube.com/watch?v=6vT1EoPYpTQ

Important Books/Journals for further learning including the page nos.:
E.Horowitz,S.Sahni Susan,Anderson-Freed, Fundamentals of Data structures in C, Universities

Press.2008- page nos:9-15

 Course Teacher

 Verified by HOD

https://nptel.ac.in/courses/106104128/
https://www.youtube.com/watch?v=6vT1EoPYpTQ

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: Abstract Data Types ADT

Introduction :

Abstract Data type (ADT) is a type (or class) for objects whose behaviour is defined by a set of

value and a set of operations.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

4.Mathematical knowledge
Detailed content of the Lecture:

 The definition of ADT only mentions what operations are to be performed but not how these

operations will be implemented. It does not specify how data will be organized in memory and

what algorithms will be used for implementing the operations. It is called “abstract” because it

gives an implementation-independent view. The process of providing only the essentials and

hiding the details is known as abstraction.

 The user of data type does not need to know how that data type is implemented, for example,

we have been using Primitive values like int, float, char data types only with the knowledge that

these data type can operate and be performed on without any idea of how they are implemented.

So a user only needs to know what a data type can do, but not how it will be implemented.

Think of ADT as a black box which hides the inner structure and design of the data type. Now

L-3
LECTURE HANDOUTS

II/III AI&DS

https://www.geeksforgeeks.org/data-types-in-c/

we’ll define three ADTs namely

 List ADT,

 Stack ADT,

 Queue ADT.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/abstract-data-types/#:~:text=Abstract%20Data%20type%
20(ADT)%20is,and%20a%20set%20of%20operations.&text=So%20a%20user%20only%
20needs,design%20of%20the%20data%20type.

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :77

 Course Teacher

 Verified by HOD

https://www.geeksforgeeks.org/linked-list-set-1-introduction/
https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.geeksforgeeks.org/abstract-data-types/#:~:text=Abstract%20Data%20type%

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures andFiles

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: List ADT

Introduction :

The data is generally stored in key sequence in a list which has a head structure consisting

of count, pointers and address of compare function needed to compare the data in the list.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

4.Mathematical knowledge

Detailed content of the Lecture:

The data node contains the pointer to a data structure and a self-referential pointer which points to the

next node in the list.

L4
LECTURE HANDOUTS

II/III AI&DS

Example:

 //List ADT Type Definitions

typedef struct node

{

void *DataPtr;

struct node *link;

} Node;

typedef struct

{

int count;

Node *pos;

Node *head;

Node *rear;

int (*compare) (void *argument1, void *argument2)

} LIST;

The List ADT Functions is given below

A list contains elements of the same type arranged in sequential order and following operations can be

performed on the list.

 get() – Return an element from the list at any given position.

 insert() – Insert an element at any position of the list.

 remove() – Remove the first occurrence of any element from a non-empty list.

 removeAt() – Remove the element at a specified location from a non-empty list.

 replace() – Replace an element at any position by another element.

 size() – Return the number of elements in the list.

 isEmpty() – Return true if the list is empty, otherwise return false.

 isFull() – Return true if the list is full, otherwise return false.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/abstract-data-
types/#:~:text=Abstract%20Data%20type%20(ADT)%20is,these%20operations%20will%20be%20
implemented.&text=Now%20we'll%20define%20three,%2C%20Stack%20ADT%2C%20Queue%
20ADT.
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ListADT.html

Important Books/Journals for further learning including the page nos.:
 Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :78

 Course Teacher

 Verified by HOD

https://www.geeksforgeeks.org/abstract-data-types/#:~:text=Abstract%20Data%20type%20(ADT)%20is,these%20operations%20will%20be%20
https://www.geeksforgeeks.org/abstract-data-types/#:~:text=Abstract%20Data%20type%20(ADT)%20is,these%20operations%20will%20be%20
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ListADT.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: Array Based Implementation

Introduction :

A list is a sequential data structure, ie. a collection of items accessible one after another beginning at the head

and ending at the tail.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

4.Mathematical knowledge

Detailed content of the Lecture:

It is a widely used data structure for applications which do not need random access Addition and

removals can be made at any position in the list

lists are normally in the form of a1,a2,a3.....an. The size of this list is n.The first element of the list is

a1,and the last element is an.The position of element ai in a list is i.

List of size 0 is called as null list.

Basic Operations on a List

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

Implementation of List:
A list can be implemented in two ways
1. Array list
2. Linked list

L-5
LECTURE HANDOUTS

II/III AI&DS

Array

An Array is a data structure which can store a fixed-size sequential collection of elements of the same

type.A specific element in an array is accessed by an index.

Different Types of Arrays

 One-dimensional array: only one index is used int [5]

 Multi-dimensional array: array involving more than one index int [2,5]

 Static array: the compiler determines how memory will be allocated for the array

 Dynamic array: memory allocation takes place during execution

One Dimensional Static Array

 Syntax:

¤ ElementType arrayName [CAPACITY];

¤ ElementType arrayName [CAPACITY] = { initializer_list };

Operations On Lists

 We‟ll consider only few operations and not all operations on Lists

 Let us consider Insert

 There are two possibilities:

¤ Ordered List

¤ Unordered List

Insertion in Detail

OPERATIONS:

1. Is Empty(LIST)

If (Current Size== 0) "LIST is Empty“

 else "LIST is not Empty“

2. Is Full(LIST)

If (Current Size=Max Size) "LIST is FULL"

else "LIST is not FULL“

Video Content / Details of website for further learning (if any):

https://www.brainkart.com/article/Array-Implementation-of-Lists-
List_6969/#:~:text=This%20implementation%20stores%20the%20list,
the%20size%20of%20the%20list.

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :78

Course Teacher

Verified by HOD

https://www.brainkart.com/article/Array-Implementation-of-Lists-List_6969/#:~:text=This%20implementation%20stores%20the%20list
https://www.brainkart.com/article/Array-Implementation-of-Lists-List_6969/#:~:text=This%20implementation%20stores%20the%20list

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher :M.S.Soundarya

Unit : I -Introduction Date of Lecture:

Topic of Lecture: Linked List Implementation

Introduction :

A linked list is a linear data structure, in which the elements are not stored at contiguous memory

locations.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

Detailed content of the Lecture:

A linked list is a linear data structure, in which the elements are not stored at contiguous memory

locations. The elements in a linked list are linked using pointers as shown in the below image:

class Node {

public:

 int data;

 Node* next;

};

Linked List vs Array

L-6
LECTURE HANDOUTS

II/III AI&DS

Arrays store elements in contiguous memory locations, resulting in easily calculable

addresses for the elements stored and this allows faster access to an element at a specific

index. Linked lists are less rigid in their storage structure and elements are usually not stored

in contiguous locations, hence they need to be stored with additional tags giving a reference

to the next element. This difference in the data storage scheme decides which data structure

would be more suitable for a given situation.

Insertion:

1.Add a node at the front

2.Add a node after a given node

3.Add a node at the end

Deleting a node

https://www.geeksforgeeks.org/array-data-structure/
https://www.geeksforgeeks.org/data-structures/linked-list/

Iterative Method:

To delete a node from the linked list, we need to do the following steps.

1) Find the previous node of the node to be deleted.

2) Change the next of the previous node.

3) Free memory for the node to be deleted.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/linked-list-set-1-introduction/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :79

Course Teacher

Verified by HOD

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/linked-list-set-1-introduction/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : I - Introduction Date of Lecture:

Topic of Lecture: Doubly Linked List

Introduction :
A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together

with next pointer and data which are there in singly linked list.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

Detailed content of the Lecture:

A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together

with next pointer and data which are there in singly linked list.

/* Node of a doubly linked list */
class Node
{
 public:
 int data;
 Node* next; // Pointer to next node in DLL
 Node* prev; // Pointer to previous node in DLL
};

L - 7 LECTURE HANDOUTS

Year/Sem AI&DS

Advantages over singly linked list

1) A DLL can be traversed in both forward and backward direction.

2) The delete operation in DLL is more efficient if pointer to the node to be deleted is given.

3) We can quickly insert a new node before a given node.

In singly linked list, to delete a node, pointer to the previous node is needed. To get this previous

node, sometimes the list is traversed. In DLL, we can get the previous node using previous pointer.

Disadvantages over singly linked list

1) Every node of DLL Require extra space for an previous pointer. It is possible to implement DLL

with single pointer though (See this and this).

2) All operations require an extra pointer previous to be maintained. For example, in insertion, we

need to modify previous pointers together with next pointers. For example in following functions for

insertions at different positions, we need 1 or 2 extra steps to set previous pointer.

Insertion

A node can be added in four ways

1) At the front of the DLL

2) After a given node.

3) At the end of the DLL

4) Before a given node.

Insertion:

1) Add a node at the front

2) Add a node after a given node

3) Add a node at the end

Delete a node in a Doubly Linked List

https://www.geeksforgeeks.org/xor-linked-list-a-memory-efficient-doubly-linked-list-set-1/
https://www.geeksforgeeks.org/xor-linked-list-a-memory-efficient-doubly-linked-list-set-2/

1.After the deletion of the head node.

2. After the deletion of the middle node.

3. After the deletion of the last node

Algorithm

 Let the node to be deleted be del.

 If node to be deleted is head node, then change the head pointer to next current head.

if headnode == del then

 headnode = del.nextNode

 Set next of previous to del, if previous to del exists.

if del.nextNode != none

 del.nextNode.previousNode = del.previousNode

 Set prev of next to del, if next to del exists.

if del.previousNode != none

 del.previousNode.nextNode = del.next

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/delete-a-node-in-a-doubly-linked-list/
https://www.geeksforgeeks.org/doubly-linked-list/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :79

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/delete-a-node-in-a-doubly-linked-list/
https://www.geeksforgeeks.org/doubly-linked-list/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : I - Introduction Date of Lecture:

Topic of Lecture: Circular Linked List

Introduction :
Circular linked list is a linked list where all nodes are connected to form a circle. There is no NULL

at the end. A circular linked list can be a singly circular linked list or doubly circular linked list.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

Detailed content of the Lecture:
Circular linked list is a linked list where all nodes are connected to form a circle. There is no NULL at the
end. A circular linked list can be a singly circular linked list or doubly circular linked list.

Advantages of Circular Linked Lists:

1) Any node can be a starting point. We can traverse the whole list by starting from any point. We

just need to stop when the first visited node is visited again.

2) Useful for implementation of queue. Unlike this implementation, we don’t need to maintain two

pointers for front and rear if we use circular linked list. We can maintain a pointer to the last inserted

node and front can always be obtained as next of last.

3) Circular lists are useful in applications to repeatedly go around the list. For example, when

multiple applications are running on a PC, it is common for the operating system to put the running

applications on a list and then to cycle through them, giving each of them a slice of time to execute,

and then making them wait while the CPU is given to another application. It is convenient for the

L - 8 LECTURE HANDOUTS

Year/Sem AI&DS

https://www.geeksforgeeks.org/queue-linked-list-implementation/

operating system to use a circular list so that when it reaches the end of the list it can cycle around to

the front of the list.

4) Circular Doubly Linked Lists are used for implementation of advanced data structures

like Fibonacci Heap.

Circular Singly Linked List | Insertion :

The structure thus formed is a circular singly linked list and looks like this:

Implementation

To implement a circular singly linked list, we take an external pointer that points to the last node of

the list. If we have a pointer last pointing to the last node, then last -> next will point to the first

node.

Insertion

A node can be added in three ways:

 Insertion in an empty list

 Insertion at the beginning of the list

 Insertion at the end of the list

 Insertion in between the nodes

Insertion in an empty List

Initially, when the list is empty, the last pointer will be NULL.

Insertion at the beginning of the list

To insert a node at the beginning of the list, follow these steps:

1. Create a node, say T.

2. Make T -> next = last -> next.

3. last -> next = T.

http://en.wikipedia.org/wiki/Fibonacci_heap

After insertion,

struct Node *addBegin(struct Node *last, int data)

{

if (last == NULL)

 return addToEmpty(last, data);

// Creating a node dynamically.

struct Node *temp

 = (struct Node *)malloc(sizeof(struct Node));

// Assigning the data.

temp -> data = data;

// Adjusting the links.

temp -> next = last -> next;

last -> next = temp;

return last;

}

Insertion at the end of the list

To insert a node at the end of the list, follow these steps:

1. Create a node, say T.

2. Make T -> next = last -> next;

3. last -> next = T.

4. last = T.

After insertion

struct Node *addEnd(struct Node *last, int data)

{

if (last == NULL)

 return addToEmpty(last, data);

// Creating a node dynamically.

struct Node *temp =

 (struct Node *)malloc(sizeof(struct Node));

// Assigning the data.

temp -> data = data;

// Adjusting the links.

temp -> next = last -> next;

last -> next = temp;

last = temp;

return last;

}

Insertion in between the nodes

To insert a node in between the two nodes, follow these steps:

1. Create a node, say T.

2. Search for the node after which T needs to be inserted, say that node is P.

3. Make T -> next = P -> next;

4. P -> next = T.

Suppose 12 needs to be inserted after the node has the value 10,

After searching and insertion

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/circular-singly-linked-list-insertion/
https://www.geeksforgeeks.org/circular-linked-list/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :79

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/circular-singly-linked-list-insertion/
https://www.geeksforgeeks.org/circular-linked-list/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : I - Introduction Date of Lecture:

Topic of Lecture: Application of List: Polynomial Manipulation

Introduction :
A linked list is a linear data structure, in which the elements are not stored at contiguous memory

locations.

Prerequisite knowledge for Complete understanding and learning of Topic:
1.Basics of Algorithm
2.Programming Knowledge

3.Data Structure

Detailed content of the Lecture:
Applications of linked list data structure

A linked list is a linear data structure, in which the elements are not stored at contiguous memory

locations. The elements in a linked list are linked using pointers as shown in the below image:

Applications of linked list in computer science –

1. Implementation of stacks and queues

2. Implementation of graphs : Adjacency list representation of graphs is most popular which is

uses linked list to store adjacent vertices.

3. Dynamic memory allocation : We use linked list of free blocks.

4. Maintaining directory of names

5. Performing arithmetic operations on long integers

6. Manipulation of polynomials by storing constants in the node of linked list

L - 9 LECTURE HANDOUTS

Year/Sem AI&DS

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/graph-and-its-representations/

7. representing sparse matrices

linked list is a data structure that stores each element as an object in a node of the list. every note

contains two parts data han and links to the next node.

Polynomial is a mathematical expression that consists of variables and coefficients. for example x^2 -

4x + 7

In the Polynomial linked list, the coefficients and exponents of the polynomial are defined as the data

node of the list.

For adding two polynomials that are stored as a linked list. We need to add the coefficients of variables

with the same power. In a linked list node contains 3 members, coefficient value link to the next node.

a linked list that is used to store Polynomial looks like −

Polynomial : 4x7 + 12x2 + 45

This is how a linked list represented polynomial looks like.

Adding two polynomials that are represented by a linked list. We check values at the exponent value of

the node. For the same values of exponent, we will add the coefficients.

Example,

Input :

p1= 13x8 + 7x5 + 32x2 + 54

p2= 3x12 + 17x5 + 3x3 + 98

Output : 3x12 + 13x8 + 24x5 + 3x3 + 32x2 + 152

Multiply Two Polynomials

To multiply two polynomials, we can first multiply each term of one polynomial to the other

polynomial. Suppose the two polynomials have and terms. This process will create a polynomial

with terms.

For example, after we multiply and , we can get a linked list:

This linked list contains all terms we need to generate the final result. However, it is not sorted by the

powers. Also, it contains duplicate nodes with like terms. To generate the final linked list, we can

first merge sort the linked list based on each node’s power:

After the sorting, the like term nodes are grouped together. Then, we can merge each group of like

terms and get the final multiplication result:

Video Content / Details of website for further learning (if any):
https://www.baeldung.com/cs/polynomial-multiplication-addition
https://www.tutorialspoint.com/adding-two-polynomials-using-linked-list-in-
cplusplus#:~:text=In%20the%20Polynomial%20linked%20list,data%20node%20of%
20the%20list.&text=Adding%20two%20polynomials%20that%20are%20represented%
20by%20a%20linked%20list,we%20will%20add%20the%20coefficients.

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :79

 Course Faculty

 Verified by HoD

https://www.baeldung.com/cs/merge-sort-linked-list
https://www.baeldung.com/cs/polynomial-multiplication-addition
https://www.tutorialspoint.com/adding-two-polynomials-using-linked-list-in-cplusplus#:~:text=In%20the%20Polynomial%20linked%20list,data%20node%20of%
https://www.tutorialspoint.com/adding-two-polynomials-using-linked-list-in-cplusplus#:~:text=In%20the%20Polynomial%20linked%20list,data%20node%20of%

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Stack ADT :Operations

Introduction :

 Stack is an Abstract data structure (ADT) works on the principle Last In First Out (LIFO).

 The last element add to the stack is the first element to be delete. Insertion and deletion can be

takes place at one end called TOP. It looks like one side closed tube.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Abstract data Type
 Arrays

 Linked List

Detailed content of the Lecture:

 A stack is a container of objects that are inserted and removed according to the last-in first-out

(LIFO) principle. In the pushdown stacks only two operations are allowed: push the item into

the stack, and pop the item out of the stack.

 A stack is a limited access data structure - elements can be added and removed from the stack

only at the top. Push adds an item to the top of the stack, pop removes the item from the top.

 The add operation of the stack is called push operation

 The delete operation is called as pop operation.

 Push operation on a full stack causes stack overflow.

 Pop operation on an empty stack causes stack underflow.

 SP is a pointer, which is used to access the top element of the stack.

 If you push elements that are added at the top of the stack

 In the same way when we pop the elements, the element at the top of the stack is deleted.

L-10

LECTURE HANDOUTS

II/III AI&DS

There are two operations applied on stack they are

 Push

 pop.

Push:

 Push operation is used to add new elements in to the stack. At the time of addition first check

the stack is full or not. If the stack is full it generates an error message "stack overflow".

 Pseudocode for push operation
void push(int data)

 {

 if(! isFull())

 { top = top + 1;

 stack[top] = data; }

 else

 { cout<<"Could not insert data, Stack is full.\n"

};

}

Time Complexity of Push operation in Stack is O(1)

Pop:

 Pop operation is used to delete elements from the stack. At the time of deletion first check the

stack is empty or not. If the stack is empty it generates an error message "stack underflow".

Pseudocode for pop operation

int pop(int data)

 { if(!isempty())

 { data = stack[top];

 top = top - 1;

 return data;

 }

 else

 { cout<<“Stack is empty.\n"; }

}

Time Complexity of Pop operation in Stack is O(1)

Video Content / Details of website for further learning (if any):
https://www.wiziq.com/tutorials/data-structure

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :103

Course Teacher

 Verified by HOD

https://www.wiziq.com/tutorials/data-structure

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Applications of Stacks: Evaluating Arithmetic Expression

Introduction :

 Stacks can be used to check parenthesis matching in an expression.

 Stacks can be used for Conversion from one form of expression to another.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Stack operation

 Expression

Detailed content of the Lecture:

 Reverse a string

 Check well-formed (nested) parenthesis

 Convert infix expression to postfix expressions

 Evaluate the postfix expression

Expressions are divided into three types

 Infix Expression

 Postfix Expression

 Prefix Expression

Infix Expression

In infix expression,operator is used in between the operands.

 A+B

Postfix Expression

In postfix expression, operator is used after operands. that the"Operator follows the Operands".

 AB+

Prefix Expression

In prefix expression, operator is used before operands.that the "Operands follows the Operator

 +AB

Conversion of infix expression to postfix expression

 Scan the infix expression from left to right.

 If the scanned symbol is left parenthesis, push it onto the stack.

 If the scanned symbol is an operand, then place directly in the postfix expression (output).

 If the symbol scanned is a right parenthesis, then go on popping all the items from the stack and

place them in the postfix expression till we get the matching left parenthesis.

 If the scanned symbol is an operator, then go on removing all the operators from the stack and

L-11
LECTURE HANDOUTS

II/III AI&DS

place them in the postfix expression, if and only if the precedence of the operator which is on

the top of the stack is greater than (or equal) to the precedence of the scanned operator and push

the scanned operator onto the stack otherwise, push the scanned operator onto the stack.

2.Reverse a string

1. Create an empty stack

2. One by one push all characters of string to stack

3 One by one pop all characters from stack and

4. put them back to string.

Video Content / Details of Itbsite for further learning (if any):

https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :104

 Course Teacher

 Verified by HOD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Evaluating Arithmetic Expression

Introduction :

 Stacks can be used to check parenthesis matching in an expression.

 Stacks can be used for Conversion from one form of expression to another.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Stack operation

 Expression

Detailed content of the Lecture:

Pseudocode

void reverse_string(char str[])

{

 int n = strlen(str);

 struct Stack* stack = createStack(n);

 int i;

 for (i = 0; i < n; i++)

 { push(stack, str[i]); }

 for (i = 0; i < n; i++)

 { str[i] = pop(stack); }

}

Time complexity to reverse string using stack

= O(1)+ O(1)+ O(n)+ O(1)+ O(n)+ O(1)

= O(n)+ O(1)

=O(n)

3.Check well-formed (nested) parenthesis / Balanced Parenthesis

Algorithm:

1. Get a String and Empty stack as input

2. Now traverse the string from left to right , and get only the parenthesis of the expression

3. If the current character is a opening bracket (‘(‘ or ‘{‘ or ‘[‘) then push it to stack

4. If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then pop from stack

5. And If the popped character is the matching i.e (=) it is balanced else (‡} not balanced

6. Repeat process 2 to 5 until string is end

7. After complete traversal, if there is some open bracket left in stack / no bracket in the stack

then also “not balanced” else balanced

L-12
LECTURE HANDOUTS

II/III AI&DS

4. Evaluate the postfix expression

 Other name of postfix expression is reverse polish notation

Algorithm:

1. Get Postfix Expression and an empty stack as input

2. Scan the postfix expression from left to right

3. If element is an operand, push it into the stack

4. If the element is an operator , pop twice

5. Evaluate expression according to the operator & push the result back to the stack

6. Repeat step 2 to 5 until expression is end

7. The value in the stack is the final answer

Program

int evaluatePostfix(char* exp)

{ struct Stack* stack = createStack(strlen(exp));

 for (i = 0; exp[i]; ++i)

 { if (isdigit(exp[i]))

 push(stack, exp[i]);

 else

 { int val1 = pop(stack);

 int val2 = pop(stack);

 switch (exp[i])

 { case '+': push(stack, val2 + val1); break;

 case '-': push(stack, val2 - val1); break;

 case '*': push(stack, val2 * val1); break;

 case '/': push(stack, val2/val1); break; }

 }

} return pop(stack); }

Time complexity

= O(1)+ O(n)+ O(1)

= O(n)+ O(1)

=O(n)

Video Content / Details of Itbsite for further learning (if any):
https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :104

 Course Teacher

 Verified by HOD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Conversion of Infix to Postfix Expression

Introduction :

 Stacks can be used to check parenthesis matching in an expression.

 Stacks can be used for Conversion from one form of expression to another.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Stack operation

 Expression

Detailed content of the Lecture:

Input:

The infix expression. x^y/(5*z)+2

Output:

Postfix Form Is: xy^5z*/2+

L-13
LECTURE HANDOUTS

II/III AI&DS

Algorithm

infixToPostfix(infix)

Input − Infix expression.

Output − Convert infix expression to postfix form.

#include<iostream>

#include<stack>

#include<locale> //for function isalnum()

using namespace std;

int preced(char ch) {

 if(ch == '+' || ch == '-') {

 return 1; //Precedence of + or - is 1

 }else if(ch == '*' || ch == '/') {

 return 2; //Precedence of * or / is 2

 }else if(ch == '^') {

 return 3; //Precedence of ^ is 3

 }else {

 return 0;

 }

}

string inToPost(string infix) {

 stack<char> stk;

 stk.push('#'); //add some extra character to avoid underflow

 string postfix = ""; //initially the postfix string is empty

 string::iterator it;

 for(it = infix.begin(); it!=infix.end(); it++) {

 if(isalnum(char(*it)))

 postfix += *it; //add to postfix when character is letter or number

 else if(*it == '(')

 stk.push('(');

 else if(*it == '^')

 stk.push('^');

 else if(*it == ')') {

 while(stk.top() != '#' && stk.top() != '(') {

 postfix += stk.top(); //store and pop until (has found

 stk.pop();

 }

 stk.pop(); //remove the '(' from stack

 }else {

 if(preced(*it) > preced(stk.top()))

 stk.push(*it); //push if precedence is high

 else {

 while(stk.top() != '#' && preced(*it) <= preced(stk.top())) {

 postfix += stk.top(); //store and pop until higher precedence is found

 stk.pop();

 }

 stk.push(*it);

 }

 }

 }

 while(stk.top() != '#') {

 postfix += stk.top(); //store and pop until stack is not empty.

 stk.pop();

 }

 return postfix;

}

int main() {

 string infix = "x^y/(5*z)+2";

 cout << "Postfix Form Is: " << inToPost(infix) << endl;

}

Video Content / Details of Itbsite for further learning (if any):

https://www.tutorialspoint.com/Convert-Infix-to-Postfix-Expression
https://runestone.academy/runestone/books/published/pythonds/
BasicDS/InfixPrefixandPostfixExpressions.html

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :109

 Course Teacher

 Verified by HOD

https://www.tutorialspoint.com/Convert-Infix-to-Postfix-Expression
https://runestone.academy/runestone/books/published/pythonds/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: QUEUE ADT

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "enqueued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Data structure

 Indices

 Pointers

Detailed content of the Lecture:

 Queue is a linear data structure where the first element is inserted from one end called REAR and

deleted from the other end called as FRONT.

 Front points to the beginning of the queue and Rear points to the end of the queue.

 Queue follows the FIFO (First - In - First Out) structure.

 Enqueue means to insert an item into the back of the queue.

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element and success.

 Dequeue means removing the front item. The picture demonstrates the FIFO access. The difference

L-14

LECTURE HANDOUTS

II/III AI&DS

between stacks and queues is in removing.

Algorithm :

Step 1 − Check if the queue is full.

Step 2 − If the queue is full, produce overflow error and exit.

Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

Step 4 − Add data element to the queue location, where the rear is pointing and return success.

Operations on Queue
Operations Description

enqueue() This function defines the operation for adding an element into queue.

dequeue() This function defines the operation for removing an element from queue.

init() This function is used for initializing the queue.

Front Front is used to get the front data item from a queue.

Rear Rear is used to get the last item from a queue.

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-

array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue.

https://www.softwaretestinghelp.com/queue-in-cpp/

Important Books/Journals for further learning including the page nos.:

Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :112

Course Teacher

 Verified by HOD

https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue
https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue
https://www.softwaretestinghelp.com/queue-in-cpp/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Queue Operations

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "enqueued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

(Max. Two important topics)

 Data structure

 Indices

 Pointers

Detailed content of the Lecture:

 Queue is a linear data structure where the first element is inserted from one end

called REAR and deleted from the other end called as FRONT.

 Front points to the beginning of the queue and Rear points to the end of the queue.

 Queue follows the FIFO (First - In - First Out) structure.

Types Of Queue

1. Circular Queue

2. Deque (Double Ended Queue)

3. Priority Queue

Enqueue Operation

 The process of adding a new data element in end of the queue is known as a Enqueue

Operation (Rear)

 Enqueue operation involves a series of steps

Step 1 − Checks if the queue is full

Step 2 − If queue is full, produces an error and exit

Step 3 − If queue is not full,

 - If queue is empty, increment both rear and front pointer by one

L-15

LECTURE HANDOUTS

II/III AI&DS

 - else increment rear by one which points to next empty space

Step 4 − Adds new data element to the queue , where rear is pointing

Step 5 − Returns success

Disadvantage of Linear Queue

 Now, actually we have deleted 2 elements from queue

 So, there should be space for another 2 elements in the queue

 But as Rear pointer is pointing at last position and Queue overflow condition

 (Rear == SIZE-1) is true, we can’t insert new element in the queue even if it has an empty

space

 To overcome this problem there is another variation of queue called circular queue

Pseudocode for enqueue operation

void enqueue(int data)

 { cout<<"Enter data to insert in a queue\t";

 Cin>>"%d",&data;

 if(! isFull())

 { if(front=-1)

 { front=front +1; rear=rear+1;

 queue[rear] = data; }

 else

 { rear=rear+1; queue[rear] = data; }

 } cout<<"Could not insert data, Queue is full.\n" ;

}

Time Complexity of Enqueue operation in Queue is O(1)

Dequeue Operation
 Removing an element from the queue at front end is known as a Dequeue

 Operation

 dequeue operation involves a series of steps

 Step 1 − Checks if the queue is empty (front==-1)

Step 2 − If the queue is empty, produces an error and exit

Step 3 − else, remove the data element at which front is pointing

Step 4 − Increment the value of front by 1

Step 5 − Returns success

Pseudocode for dequeue operation

int dequeue(int data)

 { if(! isempty())

 { data = queue[front];

 front = front+ 1;

 return data;

 }

 else

 { cout<<“queue is empty\n"; }

}

Time Complexity of Dequeue operation of Queue is O(1)

Video Content / Details of website for further learning (if any):

https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-

array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue.

https://www.geeksforgeeks.org/queue-data-structure/

Important Books/Journals for further learning including the page nos.:

Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :112

Course Teacher

 Verified by HOD

https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue
https://www.tutorialspoint.com/cplusplus-program-to-implement-queue-using-array#:~:text=A%20queue%20is%20an%20abstract,removed%20first%20in%20a%20queue
https://www.geeksforgeeks.org/queue-data-structure/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Circular Queue

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "enqueued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Abstract data Type
 Data Structures

 Indices

Detailed content of the Lecture:

 Circular Queue is a Linear Data Structure

 Collection of similar data items

 In which enqueue (insertion)operation performed at rear end and

 Dequeue (deletion) operations performed at front end

 It follows FIFO: First In, First Out / LILO: Last In Last Out –principle

 In circular queue the last node is connected back to the first node to make a circle

 Circular Queue is a Linear Data Structure

 Collection of similar data items

L-16

LECTURE HANDOUTS

II/III AI&DS

 In which enqueue (insertion)operation performed at rear end and

 Dequeue (deletion) operations performed at front end

 It follows FIFO: First In, First Out / LILO: Last In Last Out –principle

 In circular queue the last node is connected back to the first node to make a circle

Basic Operations of Circular Queue (C-Queue ADT)

o Primary Operations

 enqueue() − Adds an element to the rear of the queue

 dequeue() − Removes an element from the front of the queue

o Secondary Operations
 peek() − get the front data element of the queue, without removing it

 isFull() − check if queue is full

 isEmpty() − check if queue is empty

Enqueue Operation

 The process of adding a new data element at rear end of the queue is known as a Enqueue

Operation

 Enqueue operation involves a series of steps

Step 1 − Checks if the queue is full (front== (rear+1) % (Maxsize_queue));

Step 2 − If queue is full, produces an error and exit

Step 3 − If queue is not full,

 - If queue is empty,(front==-1) increment both rear and front pointer by one

 - else increment rear by (rear = (rear+1) % (Maxsize_queue);

Step 4 − Add new data element to the queue , where rear is pointing

Step 5 − Returns success

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/circular-queue-set-1-introduction-array-implementation/
https://www.tutorialspoint.com/cplusplus-program-to-implement-circular-queue

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :112

Course Teacher

 Verified by HOD

https://www.geeksforgeeks.org/circular-queue-set-1-introduction-array-implementation/
https://www.tutorialspoint.com/cplusplus-program-to-implement-circular-queue

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Double Ended Queues

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "enqueued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Abstract data Type
 Data Structures

 Indices

Detailed content of the Lecture:
 Circular Queue is a Linear Data Structure

 Collection of similar data items

 In which enqueue (insertion)operation performed at rear end and

 Dequeue (deletion) operations performed at front end

 It follows FIFO: First In, First Out / LILO: Last In Last Out –principle

 In circular queue the last node is connected back to the first node to make a circle

Dequeue Operation

 Removing an element from the queue at front end is known as a Dequeue

 Operation

 Enqueue operation involves a series of steps

 Step 1 − Checks if the queue is empty (front==-1)

 Step 2 − If the queue is empty, print as Queue underflow

 Step 3 − else, check if front=rear ,remove the data element at

 which front is pointing an set front=-1 & rear =-1

 Step 4 − else, remove the data element at which front is pointing and

 set front =(front+1)% maxsize_queue

 Step 5 − Returns success

L-17

LECTURE HANDOUTS

II/III AI&DS

Pseudocode for dequeue operation

Circular_dequeue(int data)

 { if(front==-1)

 { cout<<“queue is empty” }

 else { if(front==rear) data = queue[front];

 front = front- 1 ; rear=rear-1; // increment front by 1

 return data; }

 else { data = queue[front];

 front= =(front+1)% maxsize_queue;

 return data; }

 }

Time Complexity = O(1)+ O(1)+ O(1)+ O(1)+ O(1)

 =O(1)

Video Content / Details of website for further learning (if any):
https://www.wiziq.com/tutorials/data-structure

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :112

Course Teacher

 Verified by HOD

https://www.wiziq.com/tutorials/data-structure

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Teacher : M.S.Soundarya

Unit : II – Linear Data Structure Date of Lecture:

Topic of Lecture: Application of Queues

Introduction :

 A queue is a data structure that is best described as "first in, first out".

 A queue is another special kind of list, where items are inserted at one end called the rear and

deleted at the other end called the front.

 A real world example of a queue is people waiting in line at the bank. As each person enters the

bank, "enqueued" at the back of the line.

 When a teller becomes available, they are "dequeued" at the front of the line.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Abstract data Type
 Data Structures

 Indices

Detailed content of the Lecture:

Application of queue:

 Implementation of a queue is also an important application of data structure. Nowadays

computer handles multiuser, multiprogramming environment and time-sharing environment.

 In this environment a system(computer) handles several jobs at a time, to handle these jobs the

concept of a queue is used.

 To implement printer spooler so that jobs can be printed in the order of their arrival.

 Round robin scheduling technique is implemented using queue

 All types of customer service(like railway reservation) centers are designed using the concept

of queues.

 Queues find their application in real life within serving requests such as a printer queue, CPU

scheduling and calling systems.

L-18

LECTURE HANDOUTS

II/III AI&DS

https://www.techalmirah.com/introduction-to-data-structure/

Video Content / Details of website for further learning (if any):

https://www.codingninjas.com/blog/2020/10/10/queue-data-structure-and-its-applications/
https://techalmirah.com/queue-and-application-of-queue/

Important Books/Journals for further learning including the page nos.:
Weiss, Mark Allen. Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida

International University. — Fourth edition 2014 pg-no :112

Course Teacher

 Verified by HOD

https://www.codingninjas.com/blog/2020/10/10/queue-data-structure-and-its-applications/
https://techalmirah.com/queue-and-application-of-queue/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Trees - Traversal

Introduction :
 Tree is a non-linear data structure which organizes data in a hierarchical structure and this is a

recursive definition.

 A tree is a connected graph without any circuits.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Non-linear data Structure
 Data

Detailed content of the Lecture:

 Tree is a hierarchical data structure which stores the information naturally in the form of hierarchy

style.

 Tree is one of the most powerful and advanced data structures.

 It is a non-linear data structure compared to arrays, linked lists, stack and queue.

 It represents the nodes connected by edges.

 The above figure represents structure of a tree. Tree has 2 subtrees.

 A is a parent of B and C.

 B is called a child of A and also parent of D, E, F.

 Tree is a collection of elements called Nodes, where each node can have arbitrary number of

children.

L-19

LECTURE HANDOUTS

II/III AI&DS

Basic terminologies of trees
Field Description

Root Root is a special node in a tree. The entire tree is referenced through it. It does not

have a parent.

Parent Node Parent node is an immediate predecessor of a node.

Child Node All immediate successors of a node are its children.

Siblings Nodes with the same parent are called Siblings.

Path Path is a number of successive edges from source node to destination node.

Height of

Node

Height of a node represents the number of edges on the longest path between that

node and a leaf.

Height of

Tree

Height of tree represents the height of its root node.

Depth of

Node

Depth of a node represents the number of edges from the tree's root node to the node.

Degree of

Node

Degree of a node represents a number of children of a node.

Edge Edge is a connection between one node to another. It is a line between two nodes or

a node and a leaf.

Node

 Node – user-defined data structure that that contains pointers to data and pointers to other nodes

 The code to write a tree node has a data part and references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Video Content / Details of website for further learning (if any):

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/

https://www.tutorialride.com/data-structures/trees-in-data-structure.html

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 115-

121

 Course Faculty

 Verified by HoD

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
https://www.tutorialride.com/data-structures/trees-in-data-structure.htm

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Binary Tree

Introduction :
 Binary Tree is a special data structure used for data storage purposes.
 A binary tree has a special condition that each node can have a maximum of two children.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

 A binary tree has a root node. It may not have any child nodes(0 child nodes, NULL tree).

 A root node may have one or two child nodes.

 Each node forms a binary tree itself.

 The number of child nodes cannot be more than two.

 It has a unique path from the root to every other node Prefix Expression

OPERATIONS

(a) Inorder (Left, Root, Right)

(b) Preorder (Root, Left, Right)

(c) Postorder (Left, Right, Root)

Algorithm

1. Traverse the left subtree, i.e., call Inorder (left-subtree)

2. Visit the root

3. Traverse the right subtree, i.e., call Inorder (right-subtree)

Psedocode for Inorder Traversal

inOrder(treePointer ptr)

 {

 if (ptr != NULL)

 {

 inOrder(ptr->leftChild);

 visit(ptr);

 inOrder(ptr->rightChild);

 }

 }

L-20

LECTURE HANDOUTS

II/III AI&DS

Preorder Traversal (Root, Left, Right)

Preorder traversal of a binary tree is defined as follow

1. Visit the root

2. Traverse the left subtree, i.e., call Preorder (left-subtree)

3. Traverse the right subtree, i.e., call Preorder (right-subtree)

Pseudocode for Preorder Traversal

preOrder (treePointer ptr)

 {

 if (ptr != NULL)

 {

 visit(t);

 preOrder(ptr->leftChild);

 preOrder(ptr->rightChild);

 }

 }

Postorder Traversal (Left, Right, Root)

Postorder traversal of a binary tree is defined as follow

1. Traverse the left subtree, i.e., call Postorder (left-subtree)

2. Traverse the right subtree, i.e., call Postorder (right subtree)

3. Visit the root

Psedocode for Postorder Traversal

postOrder(treePointer ptr)

 {

 if (ptr != NULL)

 {

 postOrder(ptr->leftChild);

 postOrder(ptr->rightChild);

 visit(t);

 }

 }

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 115-

121

 Course Faculty

 Verified by HoD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Expression Tree

Introduction :

A binary expression tree is a specific kind of a binary tree used to represent expressions. Two common

types of expressions that a binary expression tree can represent are algebraic and boolean. These trees

can represent expressions that contain both unary and binary operators.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

 Expression Tree is used to represent expressions.

An expression and expression tree shown below

 a + (b * c) + d * (e + f)

Expression Tree

All the below are also expressions. Expressions may includes constants value as well as variables

 a * 6

 16

L-21

LECTURE HANDOUTS

II/III AI&DS

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Expression_(mathematics)
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Unary_operation
https://en.wikipedia.org/wiki/Binary_function
https://www.krivalar.com/picture/expression-tree.jpg

(a^2)+(b^2)+(2 * a * b)

 (a/b) + (c)

 m * (c ^ 2)

It is quite common to use parenthesis in order to ensure correct evaluation of expression as shown

above

There are different types of expression formats:

 Prefix expression

 Infix expression and

 Postfix expression

Expression Tree is a special kind of binary tree with the following properties:

 Each leaf is an operand. Examples: a, b, c, 6, 100

 The root and internal nodes are operators. Examples: +, -, *, /, ^

 Subtrees are subexpressions with the root being an operator.

Ino rd e r T ra ve rsa l

We can produce an infix expression by recursively printing out

 the left expression,

 the root, and

 the right expression.

Po st o rd e r T ra ve rsa l

The postfix expression can be evaluated by recursively printing out

 the left expression,

 the right expression and

 then the root

P reo rd e r T ra ve rsa l

We can also evaluate prefix expression by recursively printing out:

 the root,

 the left expressoion and

 the right expression.

If we apply all these strategies to the sample tree above, the outputs are:

 Infix expression:

(a+(b*c))+(d*(e + f))

 Postfix Expression:

a b c * + d e f + * +

 Prefix Expression:

 + + a * b c * d + e f

Const ruct io n o f E xp re ss i on T ree

Let us consider a postfix expression is given as an input for constructing an expression tree. Following

are the step to construct an expression tree:

1. Read one symbol at a time from the postfix expression.

2. Check if the symbol is an operand or operator.

3. If the symbol is an operand, create a one node tree and push a pointer onto a stack

4. If the symbol is an operator, pop two pointers from the stack namely T1 & T2 and form a new tree

with root as the operator, T1 & T2 as a left and right child

5. A pointer to this new tree is pushed onto the stack

Thus, An expression is created or constructed by reading the symbols or numbers from the left. If

operand, create a node. If operator, create a tree with operator as root and two pointers to left and right

subtree.

E xa mp le - Po st f i x E xp re s s ion C onst r uct ion

The input is:

a b + c *

The first two symbols are operands, we create one-node tree and push a pointer to them onto the stack.

Next, read a'+' symbol, so two pointers to tree are popped,a new tree is formed and push a pointer to it

onto the stack.

Next, 'c' is read, we create one node tree and push a pointer to it onto the stack.

https://www.krivalar.com/picture/tree/exp/exp1.jpg

Finally, the last symbol is read ' * ', we pop two tree pointers and form a new tree with a, ' * ' as root,

and a pointer to the final tree remains on the stack.

Video Content / Details of website for further learning (if any):

https://www.krivalar.com/data-structures-expression-tree
https://www.youtube.com/watch?v=_LxbhLNRZkI

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 115-

121

 Course Faculty

 Verified by HoD

https://www.krivalar.com/data-structures-expression-tree
https://www.youtube.com/watch?v=_LxbhLNRZkI

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Application of Trees

Introduction :
 Tree is a non-linear data structure which organizes data in a hierarchical structure and this is a

recursive definition.

 A tree is a connected graph without any circuits.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

 Why Tree?
Unlike Array and Linked List, which are linear data structures, tree is hierarchical (or non-linear)

data structure.

1. One reason to use trees might be because you want to store information that naturally forms a

hierarchy. For example, the file system on a computer:

file system

———–

 / <-- root

 / \

... home

 / \

 ugrad course

L-22

LECTURE HANDOUTS

II/III AI&DS

 / / | \

 ... cs101 cs112 cs113

2. If we organize keys in form of a tree (with some ordering e.g., BST), we can search for a given

key in moderate time (quicker than Linked List and slower than arrays). Self-balancing search

trees like AVL and Red-Black trees guarantee an upper bound of O(Logn) for search.

3. We can insert/delete keys in moderate time (quicker than Arrays and slower than Unordered

Linked Lists). Self-balancing search trees like AVL and Red-Black trees guarantee an upper

bound of O(Logn) for insertion/deletion.

4. Like Linked Lists and unlike Arrays, Pointer implementation of trees don’t have an upper limit

on number of nodes as nodes are linked using pointers.

Other Applications :
1. Store hierarchical data, like folder structure, organization structure, XML/HTML data.

2. Binary Search Tree is a tree that allows fast search, insert, delete on a sorted data. It also allows

finding closest item

3. Heap is a tree data structure which is implemented using arrays and used to implement priority

queues.

4. B-Tree and B+ Tree : They are used to implement indexing in databases.

5. Syntax Tree: Used in Compilers.

6. K-D Tree: A space partitioning tree used to organize points in K dimensional space.

7. Trie : Used to implement dictionaries with prefix lookup.

8. Suffix Tree : For quick pattern searching in a fixed text.

9. Spanning Trees and shortest path trees are used in routers and bridges respectively in computer

networks

10. As a workflow for compositing digital images for visual effects.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/applications-of-tree-data-structure/
https://www.youtube.com/watch?v=URRNruf2yVk

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 121-

123

 Course Faculty

 Verified by HoD

http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://www.geeksforgeeks.org/binary-search-tree-set-1-search-and-insertion/
https://www.geeksforgeeks.org/heap-data-structure/
https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/database-file-indexing-b-tree-introduction/
https://www.geeksforgeeks.org/compiler-design-syntax-directed-translation/
https://www.geeksforgeeks.org/k-dimensional-tree/
http://www.geeksforgeeks.org/trie-insert-and-search/
https://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-introduction/
https://www.geeksforgeeks.org/applications-of-minimum-spanning-tree/
https://www.geeksforgeeks.org/applications-of-tree-data-structure/
https://www.youtube.com/watch?v=URRNruf2yVk

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Binary Search Tree

Introduction :

 The nodes of a binary tree can be numbered in a natural way, level by level, left to right.

The nodes of a complete binary tree can be numbered so that the root is assigned the number 1, a left

child is assigned twice the number assigned its parent, and a right child is assigned one more than twice

the number assigned its parent.

Prerequisite knowledge for Complete understanding and learning of Topic:
 Searching

 Minimum VALUES

 Maximum Values

 Applications of Binary Search tree
Detailed content of the Lecture:
Binary Search Tree is a special kind of binary tree in which nodes are arranged in a specific order.
In a binary search tree (BST), each node contains-

Only smaller values in its left sub tree

Only larger values in its right sub tree

Binary Search Tree Construction-
Construct a Binary Search Tree (BST) for the following sequence of numbers-

50, 70, 60, 20, 90, 10, 40

Insert 50-

Insert 70-

As 70 > 50, so insert 70 to the right of 50.

Insert 60-

As 60 > 50, so insert 60 to the right of 50. As 60 < 70, so insert 60 to the left of 70.

L-23
LECTURE HANDOUTS

II/III AI&DS

Insert 20-

As 20 < 50, so insert 20 to the left of 50.

Insert 90-

As 90 > 50, so insert 90 to the right of 50. As 90 > 70, so insert 90 to the right of 70.

Insert 10-

As 10 < 50, so insert 10 to the left of 50. As 10 < 20, so insert 10 to the left of 20.

Insert 40-

As 40 < 50, so insert 40 to the left of 50. As 40 > 20, so insert 40 to the right of 20.

 The left sub-tree of a node contains only nodes with keys less than the node’s key.
 The right sub-tree of a node contains only nodes with keys greater than the node’s key.
 The left and right sub-tree each must also be a binary search tree. There must be no duplicate nodes.

Searching a key

To search a given key in Binary Search Tree, we first compare it with root, if the key is present

at root, we return root. If key is greater than root’s key, we recur for right sub-tree of root node.

Otherwise we recur for left sub-tree.

A utility function to search a given key in

BST def search(root,key):

Base Cases: root is null or key is present at root

if root is None or root.val ==

key: return root

Key is greater than root's

key if root.val < key:

return search(root.right,key)

Key is smaller than root's

key return search(root.left,key)

APPLICATIONS OF BINARY SEARCH TREE

· Calls to large companies

· Access to limited resources in Universities

· Accessing files from file server

Video Content / Details of website for further learning (if any):

http://www.btechsmartclass.com/data_structures/binary-search-tree.html

http://www.btechsmartclass.com/binary-search-tree.html

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 130-

132

 Course Faculty

 Verified by HoD

http://www.btechsmartclass.com/data_structures/binary-search-tree.html
http://www.btechsmartclass.com/binary-search-tree.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: AVL Tree

Introduction :

AVL tree is a binary search tree in which the difference of heights of left and right subtrees of any node

is less than or equal to one. The technique of balancing the height of binary trees was developed by

Adelson, Velskii, and Landi and hence given the short form as AVL tree or Balanced Binary Tree.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree

 Non linear structure

Detailed content of the Lecture:

An AVL tree can be defined as follows:

Let T be a non-empty binary tree with TL and TR as its left and right subtrees. The tree is height

balanced if:

 TL and TR are height balanced

 hL - hR <= 1, where hL - hR are the heights of TL and TR

The Balance factor of a node in a binary tree can have value 1, -1, 0, depending on whether the height

of its left subtree is greater, less than or equal to the height of the right subtree.

Advantages of AVL tree

Since AVL trees are height balance trees, operations like insertion and deletion have low time

complexity. Let us consider an example:

If you have the following tree having keys 1, 2, 3, 4, 5, 6, 7 and then the binary tree will be like the

second figure:

Insertion of Trees

L-24
LECTURE HANDOUTS

II/III AI&DS

Step 1: First, insert a new element into the tree using BST's (Binary Search Tree) insertion logic.

Step 2: After inserting the elements you have to check the Balance Factor of each node.

Step 3: When the Balance Factor of every node will be found like 0 or 1 or -1 then the algorithm will

proceed for the next operation.

Step 4: When the balance factor of any node comes other than the above three values then the tree is

said to be imbalanced. Then perform the suitable Rotation to make it balanced and then the algorithm

will proceed for the next operation.

For Deletion:

Step 1: Firstly, find that node where k is stored

Step 2: Secondly delete those contents of the node (Suppose the node is x)

Step 3: Claim: Deleting a node in an AVL tree can be reduced by deleting a leaf. There are three

possible cases:

Step 3: Claim: Deleting a node in an AVL tree can be reduced by deleting a leaf. There are three

possible cases:

 When x has no children then, delete x

 When x has one child, let x' becomes the child of x.

 x' cannot have a child, since subtrees of T can differ in height by at most one :

 then replace the contents of x with the contents of x'

 then delete x' (a leaf)

 Step 4: When x has two children,

 then find x's successor z (which has no left child)

 then replace x's contents with z's contents, and

 delete z

AVL Rotations

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right subtree, then we

perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree of A's right

subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left subtree. The tree

then needs a right rotation.

As depicted, the unbalanced node becomes the right child of its left child by performing a right rotation.

Left-Right Rotation

Double rotations are slightly complex version of already explained versions of rotations. To understand

them better, we should take note of each action performed while rotation. Let's first check how to

perform Left-Right rotation. A left-right rotation is a combination of left rotation followed by right

rotation.

State Action

A node has been inserted into the right subtree of the left subtree. This

makes C an unbalanced node. These scenarios cause AVL tree to

perform left-right rotation.

We first perform the left rotation on the left subtree of C. This makes A,

the left subtree of B.

Node C is still unbalanced, however now, it is because of the left-

subtree of the left-subtree.

We shall now right-rotate the tree, making B the new root node of this

subtree. C now becomes the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation

The second type of double rotation is Right-Left Rotation. It is a combination of right rotation followed

by left rotation.

State Action

A node has been inserted into the left subtree of the right subtree. This

makes A, an unbalanced node with balance factor 2.

First, we perform the right rotation along C node, making C the right subtree

of its own left subtree B. Now, B becomes the right subtree of A.

Node A is still unbalanced because of the right subtree of its right subtree

and requires a left rotation.

A left rotation is performed by making B the new root node of the

subtree. A becomes the left subtree of its right subtree B.

The tree is now balanced.

Video Content / Details of website for further learning (if any):
http://www.btechsmartclass.com/data_structures/avl tree.html

http://www.btechsmartclass.com/avl.html

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 144

 Course Faculty

 Verified by HoD

http://www.btechsmartclass.com/data_structures/avl%20tree.html
http://www.btechsmartclass.com/avl.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: B-Tree

Introduction :
B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can

have at most m-1 keys and m children. One of the main reason of using B tree is its capability to store

large number of keys in a single node and large key values by keeping the height of the tree relatively

small.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can

have at most m-1 keys and m children. One of the main reason of using B tree is its capability to store

large number of keys in a single node and large key values by keeping the height of the tree relatively

small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains the following

properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level

L-25
LECTURE HANDOUTS

II/III AI&DS

Operations

Searching :

Searching in B Trees is similar to that in Binary search tree. For example, if we search for an item 49 in

the following B Tree. The process will something like following :

1. Compare item 49 with root node 78. since 49 < 78 hence, move to its left sub-tree.

2. Since, 40<49<56, traverse right sub-tree of 40.

3. 49>45, move to right. Compare 49.

4. match found, return.

Inserting

Insertions are done at the leaf node level. The following algorithm needs to be followed in order to

insert an item into B Tree.

1. Traverse the B Tree in order to find the appropriate leaf node at which the node can be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the increasing order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps.

o Insert the new element in the increasing order of elements.

o Split the node into the two nodes at the median.

o Push the median element upto its parent node.

Deletion

Deletion is also performed at the leaf nodes. The node which is to be deleted can either be a leaf node

or an internal node. Following algorithm needs to be followed in order to delete a node from a B tree.

1. Locate the leaf node.

2. If there are more than m/2 keys in the leaf node then delete the desired key from the node.

3. If the leaf node doesn't contain m/2 keys then complete the keys by taking the element from

eight or left sibling.

o If the left sibling contains more than m/2 elements then push its largest element up to its

parent and move the intervening element down to the node where the key is deleted.

o If the right sibling contains more than m/2 elements then push its smallest element up to

the parent and move intervening element down to the node where the key is deleted.

4. If neither of the sibling contain more than m/2 elements then create a new leaf node by joining

two leaf nodes and the intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above process on the parent too.

If the the node which is to be deleted is an internal node, then replace the node with its in-order

successor or predecessor. Since, successor or predecessor will always be on the leaf node hence, the

process will be similar as the node is being deleted from the leaf node.

Application of B tree

B tree is used to index the data and provides fast access to the actual data stored on the disks since, the

access to value stored in a large database that is stored on a disk is a very time consuming process.

Searching an un-indexed and unsorted database containing n key values needs O(n) running time in

worst case. However, if we use B Tree to index this database, it will be searched in O(log n) time in

worst case.

Video Content / Details of website for further learning (if any):
https://www.youtube.com/watch?v=sFVxsglODoo

https://nptel.ac.in/courses/106/106/106106133/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 168

 Course Faculty

 Verified by HoD

https://www.youtube.com/watch?v=sFVxsglODoo

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Heap

Introduction :
A Heap is a special Tree-based data structure in which the tree is a complete binary tree.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

 Heaps can be of two types:

1. Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys

present at all of it’s children. The same property must be recursively true for all sub-trees in that

Binary Tree.

2. Min-Heap: In a Min-Heap the key present at the root node must be minimum among the keys

present at all of it’s children. The same property must be recursively true for all sub-trees in that

Binary Tree.

Binary Heap

A Binary Heap is a Binary Tree with following properties.

1) It’s a complete tree (All levels are completely filled except possibly the last level and the last level

L-26

LECTURE HANDOUTS

II/III AI&DS

has all keys as left as possible). This property of Binary Heap makes them suitable to be stored in an

array.

2) A Binary Heap is either Min Heap or Max Heap. In a Min Binary Heap, the key at root must be

minimum among all keys present in Binary Heap. The same property must be recursively true for all

nodes in Binary Tree. Max Binary Heap is similar to MinHeap.

Examples of Min Heap:

 10 10

 / \ / \

 20 100 15 30

 / / \ / \

 30 40 50 100 40

How is Binary Heap represented?

A Binary Heap is a Complete Binary Tree. A binary heap is typically represented as an array.

 The root element will be at Arr[0].

 Below table shows indexes of other nodes for the ith node, i.e., Arr[i]:

Arr[(i-1)/2] Returns the parent node

Arr[(2*i)+1] Returns the left child node

Arr[(2*i)+2] Returns the right child node

 The traversal method use to achieve Array representation is Level Order

Operations on Min Heap:

1) getMini(): It returns the root element of Min Heap. Time Complexity of this operation is O(1).

2) extractMin(): Removes the minimum element from MinHeap. Time Complexity of this Operation

is O(Logn) as this operation needs to maintain the heap property (by calling heapify()) after removing

root.

3) decreaseKey(): Decreases value of key. The time complexity of this operation is O(Logn). If the

decreases key value of a node is greater than the parent of the node, then we don’t need to do anything.

Otherwise, we need to traverse up to fix the violated heap property.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/time-complexity-of-building-a-heap/
https://www.youtube.com/watch?v=86mQ1gD3Zgg

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 245

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/time-complexity-of-building-a-heap/
https://www.youtube.com/watch?v=86mQ1gD3Zgg

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : III – Non Linear Data Structure Date of Lecture:

Topic of Lecture: Application of Heap-Tries

Introduction :
Heaps are used in many famous algorithms such as Dijkstra's algorithm for finding the shortest path, the

heap sort sorting algorithm, implementing priority queues, and more. Essentially, heaps are the data

structure you want to use when you want to be able to access the maximum or minimum element very

quickly.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Nodes

 Tree
 Non linear structure

Detailed content of the Lecture:

 Heap Data Structure is generally taught with Heapsort. Heapsort algorithm has limited uses because

Quicksort is better in practice. Nevertheless, the Heap data structure itself is enormously used.

Following are some uses other than Heapsort.

Priority Queues: Priority queues can be efficiently implemented using Binary Heap because it

supports insert(), delete() and extractmax(), decreaseKey() operations in O(logn) time. Binomoial

Heap and Fibonacci Heap are variations of Binary Heap. These variations perform union also in

O(logn) time which is a O(n) operation in Binary Heap. Heap Implemented priority queues are used in

Graph algorithms like Prim’s Algorithm and Dijkstra’s algorithm.

The heap data structure has many applications.

 Heapsort: One of the best sorting methods being in-place and with no quadratic worst-case

scenarios.

 Selection algorithms: A heap allows access to the min or max element in constant time, and other

selections (such as median or kth-element) can be done in sub-linear time on data that is in a heap.[19]

 Graph algorithms: By using heaps as internal traversal data structures, run time will be reduced by

polynomial order. Examples of such problems are Prim's minimal-spanning-tree

algorithm and Dijkstra's shortest-path algorithm.

 Priority Queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be

implemented with a linked list or an array, a priority queue can be implemented with a heap or a

variety of other methods.

L-27

LECTURE HANDOUTS

II/III AI&DS

http://en.wikipedia.org/wiki/Prim%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Selection_algorithm
https://en.wikipedia.org/wiki/Heap_%28data_structure%29#cite_note-24
https://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Priority_Queue

 K-way merge: A heap data structure is useful to merge many already-sorted input streams into a

single sorted output stream. Examples of the need for merging include external sorting and streaming

results from distributed data such as a log structured merge tree. The inner loop is obtaining the min

element, replacing with the next element for the corresponding input stream, then doing a sift-down

heap operation. (Alternatively the replace function.) (Using extract-max and insert functions of a

priority queue are much less efficient.)

 Order statistics: The Heap data structure can be used to efficiently find the kth smallest (or largest)

element in an array.

Video Content / Details of website for further learning (if any):

https://en.wikipedia.org/wiki/Heap_%28data_structure%29#Applications
https://www.geeksforgeeks.org/applications-of-heap-data-structure/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 245

 Course Faculty

 Verified by HoD

https://en.wikipedia.org/wiki/K-way_merge_algorithm
https://en.wikipedia.org/wiki/Order_statistics
https://en.wikipedia.org/wiki/Heap_%28data_structure%29#Applications
https://www.geeksforgeeks.org/applications-of-heap-data-structure/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Graph – Representation of Graph

Introduction :
 A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also

referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of edges E = {01, 12, 23, 34, 04, 14, 13}.

Graphs are used to solve many real-life problems. Graphs are used to represent networks. The networks

may include paths in a city or telephone network or circuit network. Graphs are also used in social networks

like linkedIn, Facebook. For example, in Facebook, each person is represented with a vertex(or node). Each

node is a structure and contains information like person id, name, gender, locale etc.

Graph and its representations

A graph is a data structure that consists of the following two components:

1. A finite set of vertices also called as nodes.

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not

L - 28

LECTURE HANDOUTS
 II/III AI & DS

the same as (v, u) in case of a directed graph(di-graph). The pair of the form (u, v) indicates that there

is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Graphs are used to represent many real-life applications: Graphs are used to represent networks. The

networks may include paths in a city or telephone network or circuit network. Graphs are also used in

social networks like linkedIn, Facebook. For example, in Facebook, each person is represented with a

vertex(or node). Each node is a structure and contains information like person id, name, gender, and

locale. See this for more applications of graph.

Following is an example of an undirected graph with 5 vertices.

The following two are the most commonly used representations of a graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The choice of graph

representation is situation-specific. It totally depends on the type of operations to be performed and

ease of use.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let the 2D

array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j. Adjacency

matrix for undirected graph is always symmetric. Adjacency Matrix is also used to represent weighted

graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j with weight w.

The adjacency matrix for the above example graph is:

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time. Queries

like whether there is an edge from vertex ‘u’ to vertex ‘v’ are efficient and can be done O(1).

Cons: Consumes more space O(V^2). Even if the graph is sparse(contains less number of edges), it

consumes the same space. Adding a vertex is O(V^2) time.

Please see this for a sample Python implementation of adjacency matrix.

Adjacency List:

An array of lists is used. The size of the array is equal to the number of vertices. Let the array be an

array[]. An entry array[i] represents the list of vertices adjacent to the ith vertex. This representation

can also be used to represent a weighted graph. The weights of edges can be represented as lists of

http://en.wikipedia.org/wiki/Graph_theory#Applications
https://ide.geeksforgeeks.org/9je5j6jJ13

pairs. Following is the adjacency list representation of the above graph.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/graph-and-its-representations/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/graph-and-its-representations/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Graph Traversal

Introduction :
 Graph traversal is a technique used for searching a vertex in a graph. The graph traversal is also

used to decide the order of vertices is visited in the search process. A graph traversal finds the

edges to be used in the search process without creating loops.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:

Graph traversal is a technique used for a searching vertex in a graph. The graph traversal is also used to

decide the order of vertices is visited in the search process. A graph traversal finds the edges to be used

in the search process without creating loops. That means using graph traversal we visit all the vertices of

the graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without

loops. We use Stack data structure with maximum size of total number of vertices in the graph to

implement DFS traversal.

DFS (Depth First Search)

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without

loops. We use Stack data structure with maximum size of total number of vertices in the graph to

implement DFS traversal.

L - 29

LECTURE HANDOUTS
 II/III AI & DS

Video Content / Details of website for further learning (if any):
http://www.btechsmartclass.com/data_structures/graph-traversal-dfs.html
http://www.btechsmartclass.com/data_structures/graph-traversal-bfs.html

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

http://www.btechsmartclass.com/data_structures/graph-traversal-dfs.html
http://www.btechsmartclass.com/data_structures/graph-traversal-bfs.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Breadth First Traversal

Introduction :
 BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph without

loops. We use Queue data structure with maximum size of total number of vertices in the graph to

implement BFS traversal.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:
The following steps to implement BFS traversal...

 Step 1 - Define a Queue of size total number of vertices in the graph.

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it into the

Queue.

 Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the Queue

and insert them into the Queue.

 Step 4 - When there is no new vertex to be visited from the vertex which is at front of the Queue

then delete that vertex.

 Step 5 - Repeat steps 3 and 4 until queue becomes empty.

 Step 6 - When queue becomes empty, then produce final spanning tree by removing unused edges

from the graph

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only

catch here is, unlike trees, graphs may contain cycles, a node may be visited twice. To avoid

processing a node more than once, use a boolean visited array.

Example:

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1 : 1 2 0 3

Explanation:

DFS Diagram:

L - 30

LECTURE HANDOUTS
 II/III AI & DS

http://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

Output: DFS from vertex 2 : 2 0 1 3

Explanation:

DFS Diagram:

// C++ program to print DFS traversal from

// a given vertex in a given graph

#include <bits/stdc++.h>

using namespace std;

// Graph class represents a directed graph

// using adjacency list representation

class Graph

{

public:

 map<int, bool> visited;

 map<int, list<int>> adj;

 // function to add an edge to graph

 void addEdge(int v, int w);

 // DFS traversal of the vertices

 // reachable from v

 void DFS(int v);

};

void Graph::addEdge(int v, int w)

{

 adj[v].push_back(w); // Add w to v’s list.

}

void Graph::DFS(int v)

{

 // Mark the current node as visited and

 // print it

 visited[v] = true;

 cout << v << " ";

 // Recur for all the vertices adjacent

 // to this vertex

 list<int>::iterator i;

 for (i = adj[v].begin(); i != adj[v].end(); ++i)

 if (!visited[*i])

 DFS(*i);

}

// Driver code

int main()

{

 // Create a graph given in the above diagram

 Graph g;

 g.addEdge(0, 1);

 g.addEdge(0, 2);

 g.addEdge(1, 2);

 g.addEdge(2, 0);

 g.addEdge(2, 3);

 g.addEdge(3, 3);

 cout << "Following is Depth First Traversal"

 " (starting from vertex 2) \n";

 g.DFS(2);

 return 0;

}

Output:

Following is Depth First Traversal (starting from vertex 2)

2 0 1 3

Complexity Analysis:

 Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in

the graph.

 Space Complexity: O(V).

Since an extra visited array is needed of size V.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.google.com/search?q=graph+in+data+structure&sxsrf=AOaemvKNSfdSUMD

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.google.com/search?q=graph+in+data+structure&sxsrf=AOaemvKNSfdSUMD

 Course Faculty

 Verified by HoD

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Depth First Traversal

Introduction :
 Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The

only catch here is, unlike trees, graphs may contain cycles, a node may be visited twice. To avoid

processing a node more than once, use a boolean visited array.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only

catch here is, unlike trees, graphs may contain cycles, a node may be visited twice. To avoid

processing a node more than once, use a boolean visited array.

 Example:

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1 : 1 2 0 3

Explanation:

DFS Diagram:

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

L - 31

LECTURE HANDOUTS
 II/III AI & DS

http://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
http://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

Output: DFS from vertex 2 : 2 0 1 3

Explanation:

DFS Diagram:

 Approach: Depth-first search is an algorithm for traversing or searching tree or graph data

structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in

the case of a graph) and explores as far as possible along each branch before backtracking. So the

basic idea is to start from the root or any arbitrary node and mark the node and move to the adjacent

unmarked node and continue this loop until there is no unmarked adjacent node. Then backtrack

and check for other unmarked nodes and traverse them. Finally, print the nodes in the path.

 Algorithm:

1. Create a recursive function that takes the index of the node and a visited array.

2. Mark the current node as visited and print the node.

3. Traverse all the adjacent and unmarked nodes and call the recursive function with the index of

the adjacent node.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.youtube.com/watch?v=UxXasZyx0Z0

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.youtube.com/watch?v=UxXasZyx0Z0

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Minimum Spanning Trees Prim’s algorithm

Introduction :
 Graph is a non linear data structure that has nodes and edges. Minimum Spanning Tree is a set of

edges in an undirected weighted graph that connects all the vertices with no cycles and minimum

total edge weight. When number of edges to vertices is high, Prim's algorithm is preferred over

Kruskal's.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:

 A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible

number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected..By

this definition, we can draw a conclusion that every connected and undirected Graph G has at

least one spanning tree. A disconnected graph does not have any spanning tree, as it cannot be

spanned to all its vertices.

We found three spanning trees off one complete graph. A complete undirected graph can have

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above addressed

example, n is 3, hence 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a few properties

of the spanning tree connected to graph G −

L - 32

LECTURE HANDOUTS
 II/III AI & DS

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning

tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree

is maximally acyclic.

Mathematical Properties of Spanning Tree
 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning

tree.

 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected graphs

do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. Common

application of spanning trees are −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge graph and now plans

to deploy telephone lines in such a way that in minimum lines we can connect to all city nodes. This is

where the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than all other

spanning trees of the same graph. In real-world situations, this weight can be measured as distance,

congestion, traffic load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm

We shall learn about two most important spanning tree algorithms here −

 Kruskal's Algorithm

 Prim's Algorithm

Video Content / Details of website for further learning (if any):
https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.html

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.html

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Kruskal’s algorithm

Introduction :

 Kruskal's algorithm finds a minimum spanning forest of an undirected edge-weighted graph. If

the graph is connected, it finds a minimum spanning tree. ... It is a greedy algorithm in graph theory

as in each step it adds the next lowest-weight edge that will not form a cycle to the minimum spanning

forest.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Node

 Edge

 Vertices

Detailed content of the Lecture:

 Given a connected and undirected graph, a spanning tree of that graph is a subgraph that is a

tree and connects all the vertices together. A single graph can have many different spanning

trees.

 A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected,

undirected graph is a spanning tree with a weight less than or equal to the weight of every other

spanning tree.

 The weight of a spanning tree is the sum of weights given to each edge of the spanning tree.

Below are the steps for finding MST using Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is n

ot formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

L - 33

LECTURE HANDOUTS
 II/III AI & DS

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9

– 1) = 8 edges.

After sorting:

Weight Src Dest

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges

1. Pick edge 7-6: No cycle is formed, include it.

2. Pick edge 8-2: No cycle is formed, include it.

3. Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in the cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in the cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in the cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the algorithm stops here.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Shortest path algorithms -Dijkstra’s algorithm

Introduction :
 Dijkstra's algorithm is the iterative algorithmic process to provide us with the shortest path from

one specific starting node to all other nodes of a graph. It is different from the minimum spanning

tree as the shortest distance among two vertices might not involve all the vertices of the graph.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Tree

 Graph

 Vertex

 Vertices

Detailed content of the Lecture:

 Given a graph and a source vertex in the graph, find the shortest paths from the source to all vertices

in the given graph.

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST,

we generate a SPT (shortest path tree) with a given source as a root. We maintain two sets, one set

contains vertices included in the shortest-path tree, other set includes vertices not yet included in the

shortest-path tree. At every step of the algorithm, we find a vertex that is in the other set (set of not yet

included) and has a minimum distance from the source.

Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source

vertex to all other vertices in the given graph.

Algorithm
1) Create a set sptSet (shortest path tree set) that keeps track of vertices included in the shortest-path

tree, i.e., whose minimum distance from the source is calculated and finalized. Initially, this set is

empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE.

Assign distance value as 0 for the source vertex so that it is picked first.

3) While sptSet doesn’t include all vertices

….a) Pick a vertex u which is not there in sptSet and has a minimum distance value.

….b) Include u to sptSet.

….c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through

all adjacent vertices. For every adjacent vertex v, if the sum of distance value of u (from source) and

weight of edge u-v, is less than the distance value of v, then update the distance value of v.

L - 34

LECTURE HANDOUTS
 II/III AI & DS

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

Let us understand with the following example:

The set sptSet is initially empty and distances assigned to vertices are {0, INF, INF, INF, INF, INF,

INF, INF} where INF indicates infinite. Now pick the vertex with a minimum distance value. The

vertex 0 is picked, include it in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update

distance values of its adjacent vertices. Adjacent vertices of 0 are 1 and 7. The distance values of 1 and

7 are updated as 4 and 8. The following subgraph shows vertices and their distance values, only the

vertices with finite distance values are shown. The vertices included in SPT are shown in green colour.

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). The

vertex 1 is picked and added to sptSet. So sptSet now becomes {0, 1}. Update the distance values of

adjacent vertices of 1. The distance value of vertex 2 becomes 12.

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). Vertex

7 is picked. So sptSet now becomes {0, 1, 7}. Update the distance values of adjacent vertices of 7. The

distance value of vertex 6 and 8 becomes finite (15 and 9 respectively).

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). Vertex

6 is picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values of adjacent vertices of 6.

The distance value of vertex 5 and 8 are updated.

We repeat the above steps until sptSet includes all vertices of the given graph. Finally, we get the

following Shortest Path Tree (SPT).

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.youtube.com/watch?v=pSqmAO-m7Lk

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.youtube.com/watch?v=pSqmAO-m7Lk

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Floyd Warshall algorithm

Introduction :
 The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The problem is to

find shortest distances between every pair of vertices in a given edge weighted directed Graph.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Tree

 Graph

Detailed content of the Lecture:

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem.

The problem is to find shortest distances between every pair of vertices in a given edge

weighted directed Graph.

We initialize the solution matrix same as the input graph matrix as a first step.

 Then we update the solution matrix by considering all vertices as an intermediate vertex. The idea is to

one by one pick all vertices and updates all shortest paths which include the picked vertex as an

intermediate vertex in the shortest path. When we pick vertex number k as an intermediate vertex, we

already have considered vertices {0, 1, 2, .. k-1} as intermediate vertices. For every pair (i, j) of the source

and destination vertices respectively, there are two possible cases.

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it is.

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as dist[i][k] +

dist[k][j] if dist[i][j] > dist[i][k] + dist[k][j]

The following figure shows the above optimal substructure property in the all-pairs shortest path problem.

L - 35

LECTURE HANDOUTS
 II/III AI & DS

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

// C++ Program for Floyd Warshall Algorithm

#include <bits/stdc++.h>

using namespace std;

// Number of vertices in the graph

#define V 4

/* Define Infinite as a large enough

value.This value will be used for

vertices not connected to each other */

#define INF 99999

// A function to print the solution matrix

void printSolution(int dist[][V]);

// Solves the all-pairs shortest path

// problem using Floyd Warshall algorithm

void floydWarshall(int graph[][V])

{

 /* dist[][] will be the output matrix

 that will finally have the shortest

 distances between every pair of vertices */

 int dist[V][V], i, j, k;

 /* Initialize the solution matrix same

 as input graph matrix. Or we can say

 the initial values of shortest distances

 are based on shortest paths considering

 no intermediate vertex. */

 for (i = 0; i < V; i++)

 for (j = 0; j < V; j++)

 dist[i][j] = graph[i][j];

 /* Add all vertices one by one to

 the set of intermediate vertices.

 ---> Before start of an iteration,

 we have shortest distances between all

 pairs of vertices such that the

 shortest distances consider only the

 vertices in set {0, 1, 2, .. k-1} as

 intermediate vertices.

 ----> After the end of an iteration,

 vertex no. k is added to the set of

 intermediate vertices and the set becomes {0, 1, 2, ..

 k} */

 for (k = 0; k < V; k++) {

 // Pick all vertices as source one by one

 for (i = 0; i < V; i++) {

 // Pick all vertices as destination for the

 // above picked source

 for (j = 0; j < V; j++) {

 // If vertex k is on the shortest path from

 // i to j, then update the value of

 // dist[i][j]

 if (dist[i][j] > (dist[i][k] + dist[k][j])

 && (dist[k][j] != INF

 && dist[i][k] != INF))

 dist[i][j] = dist[i][k] + dist[k][j];

 }

 }

 }

 // Print the shortest distance matrix

 printSolution(dist);

}

/* A utility function to print solution */

void printSolution(int dist[][V])

{

 cout << "The following matrix shows the shortest "

 "distances"

 " between every pair of vertices \n";

 for (int i = 0; i < V; i++) {

 for (int j = 0; j < V; j++) {

 if (dist[i][j] == INF)

 cout << "INF"

 << " ";

 else

 cout << dist[i][j] << " ";

 }

 cout << endl;

 }

}

// Driver code

int main()

{

 /* Let us create the following weighted graph

 10

 (0)------->(3)

 | /|\

 5 | |

 | | 1

 \|/ |

 (1)------->(2)

 3 */

 int graph[V][V] = { { 0, 5, INF, 10 },

 { INF, 0, 3, INF },

 { INF, INF, 0, 1 },

 { INF, INF, INF, 0 } };

 // Print the solution

 floydWarshall(graph);

 return 0;

}

Output :

Following matrix shows the shortest distances between every pair of vertices

 0 5 8 9

 INF 0 3 4

 INF INF 0 1

 INF INF INF 0

Time Complexity: O(V^3)

The above program only prints the shortest distances. We can modify the solution to print the shortest

paths also by storing the predecessor information in a separate 2D matrix.

Also, the value of INF can be taken as INT_MAX from limits.h to make sure that we handle maximum

possible value. When we take INF as INT_MAX, we need to change the if condition in the above

program to avoid arithmetic overflow.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.youtube.com/watch?v=NdBHw5mqIZE

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.youtube.com/watch?v=NdBHw5mqIZE

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : IV – Graphs Date of Lecture:

Topic of Lecture: Applications of Graphs Topological Sort

Introduction :

 Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for

every directed edge u v, vertex u comes before v in the ordering. Topological Sorting for a graph

is not possible if the graph is not a DAG.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Tree

 Graph

Detailed content of the Lecture:

 Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for

every directed edge u v, vertex u comes before v in the ordering. Topological Sorting for a graph is

not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be more than one

topological sorting for a graph. For example, another topological sorting of the following graph is “4

5 2 3 1 0”. The first vertex in topological sorting is always a vertex with in-degree as 0 (a vertex with

no incoming edges).

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In topological sorting,

we need to print a vertex before its adjacent vertices. For example, in the given graph, the vertex ‘5’

L - 36

LECTURE HANDOUTS
 II/III AI & DS

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

should be printed before vertex ‘0’, but unlike DFS, the vertex ‘4’ should also be printed before vertex

‘0’. So Topological sorting is different from DFS. For example, a DFS of the shown graph is “5 2 3 1

0 4”, but it is not a topological sorting.

// A C++ program to print topological

// sorting of a DAG

#include <iostream>

#include <list>

#include <stack>

using namespace std;

// Class to represent a graph

class Graph {

 // No. of vertices'

 int V;

 // Pointer to an array containing adjacency listsList

 list<int>* adj;

 // A function used by topologicalSort

 void topologicalSortUtil(int v, bool visited[],

 stack<int>& Stack);

public:

 // Constructor

 Graph(int V);

 // function to add an edge to graph

 void addEdge(int v, int w);

 // prints a Topological Sort of

 // the complete graph

 void topologicalSort();

};

Graph::Graph(int V)

{

 this->V = V;

 adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

 // Add w to v’s list.

 adj[v].push_back(w);

}

// A recursive function used by topologicalSort

void Graph::topologicalSortUtil(int v, bool visited[],

 stack<int>& Stack)

{

 // Mark the current node as visited.

 visited[v] = true;

 // Recur for all the vertices

 // adjacent to this vertex

 list<int>::iterator i;

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

 for (i = adj[v].begin(); i != adj[v].end(); ++i)

 if (!visited[*i])

 topologicalSortUtil(*i, visited, Stack);

 // Push current vertex to stack

 // which stores result

 Stack.push(v);

}

// The function to do Topological Sort.

// It uses recursive topologicalSortUtil()

void Graph::topologicalSort()

{

 stack<int> Stack;

 // Mark all the vertices as not visited

 bool* visited = new bool[V];

 for (int i = 0; i < V; i++)

 visited[i] = false;

 // Call the recursive helper function

 // to store Topological

 // Sort starting from all

 // vertices one by one

 for (int i = 0; i < V; i++)

 if (visited[i] == false)

 topologicalSortUtil(i, visited, Stack);

 // Print contents of stack

 while (Stack.empty() == false) {

 cout << Stack.top() << " ";

 Stack.pop();

 }

}

// Driver Code

int main()

{

 // Create a graph given in the above diagram

 Graph g(6);

 g.addEdge(5, 2);

 g.addEdge(5, 0);

 g.addEdge(4, 0);

 g.addEdge(4, 1);

 g.addEdge(2, 3);

 g.addEdge(3, 1);

 cout << "Following is a Topological Sort of the given "

 "graph \n";

 // Function Call

 g.topologicalSort();

 return 0;

}

Output:

Following is a Topological Sort of the given graph

5 4 2 3 1 0

Complexity Analysis:

 Time Complexity: O(V+E).

The above algorithm is simply DFS with an extra stack. So time complexity is the same as DFS

which is.

 Auxiliary space: O(V).

The extra space is needed for the stack.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/topological-sorting/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/topological-sorting/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Searching - Linear Search

Introduction :
 Searching Algorithms are designed to check for an element or retrieve an element from any data

structure where it is stored.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Linear Search

 Binary Search

Detailed content of the Lecture:
Based on the type of search operation, these algorithms are generally classified into two categories:

1. Sequential Search: In this, the list or array is traversed sequentially and every element is checked.

For example: Linear Search.

2. Interval Search: These algorithms are specifically designed for searching in sorted data-structures.

These type of searching algorithms are much more efficient than Linear Search as they repeatedly

target the center of the search structure and divide the search space in half. For Example: Binary

Search.

A simple approach is to do a linear search, i.e

 Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

 If x matches with an element, return the index.

 If x doesn’t match with any of elements, return -1.

L - 37

LECTURE HANDOUTS
 II/III AI & DS

https://www.geeksforgeeks.org/linear-search/
https://www.geeksforgeeks.org/binary-search/
https://www.geeksforgeeks.org/binary-search/

Binary Search to find the element “23” in a given list of numbers

Problem: Given an array arr[] of n elements, write a function to search a given element x in arr[].

Examples :

Input : arr[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 110;

Output : 6

Element x is present at index 6

Input : arr[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 175;

Output : -1

Element x is not present in arr[].

// C++ code to linearly search x in arr[]. If x

// is present then return its location, otherwise

// return -1

#include <iostream>

using namespace std;

int search(int arr[], int n, int x)

{

 int i;

 for (i = 0; i < n; i++)

 if (arr[i] == x)

 return i;

 return -1;

}

// Driver code

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int x = 10;

 int n = sizeof(arr) / sizeof(arr[0]);

 // Function call

 int result = search(arr, n, x);

 (result == -1)

 ? cout << "Element is not present in array"

 : cout << "Element is present at index " << result;

 return 0;

}

Output:

Element is present at index 3

The time complexity of the above algorithm is O(n).

 Linear search is rarely used practically because other search algorithms such as the binary

search algorithm and hash tables allow significantly faster-searching comparison to Linear

search.

Improve Linear Search Worst-Case Complexity
1. if element Found at last O(n) to O(1)

2. It is the same as previous method because here we are performing 2 ‘if’ operations in one iteration

of the loop and in previous method we performed only 1 ‘if’ operation. This makes both the time

complexities same.

Video Content / Details of website for further learning (if any):
https://www.geeksforgeeks.org/linear-search/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/linear-search/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Binary Search

Introduction :
 Binary search is an efficient algorithm for finding an item from a sorted list of items. It works by

repeatedly dividing in half the portion of the list that could contain the item, until you've narrowed

down the possible locations to just one. We used binary search in the guessing game in the

introductory tutorial.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Searching

 Binary Search

Detailed content of the Lecture:

 A simple approach is to do a linear search. The time complexity of the above algorithm is

O(n). Another approach to perform the same task is using Binary Search.

Binary Search:

 Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval

covering the whole array. If the value of the search key is less than the item in the middle of

the interval, narrow the interval to the lower half. Otherwise, narrow it to the upper half.

Repeatedly check until the value is found or the interval is empty.

L - 38

LECTURE HANDOUTS
 II/III AI & DS

https://www.geeksforgeeks.org/linear-search/

The idea of binary search is to use the information that the array is sorted and reduce the time

complexity to O(Log n).

// C++ program to implement recursive Binary Search

#include <bits/stdc++.h>

using namespace std;

// A recursive binary search function. It returns

// location of x in given array arr[l..r] is present,

// otherwise -1

int binarySearch(int arr[], int l, int r, int x)

{

 if (r >= l) {

 int mid = l + (r - l) / 2;

 // If the element is present at the middle

 // itself

 if (arr[mid] == x)

 return mid;

 // If element is smaller than mid, then

 // it can only be present in left subarray

 if (arr[mid] > x)

 return binarySearch(arr, l, mid - 1, x);

 // Else the element can only be present

 // in right subarray

 return binarySearch(arr, mid + 1, r, x);

 }

 // We reach here when element is not

 // present in array

 return -1;

}

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int x = 10;

 int n = sizeof(arr) / sizeof(arr[0]);

 int result = binarySearch(arr, 0, n - 1, x);

 (result == -1) ? cout << "Element is not present in array"

 : cout << "Element is present at index " << result;

 return 0;

}

Output :

Element is present at index 3

Time Complexity:

The time complexity of Binary Search can be written as

T(n) = T(n/2) + c

The above recurrence can be solved either using the Recurrence Tree method or Master method. It

falls in case II of the Master Method and the solution of the recurrence is .

Auxiliary Space: O(1) in case of iterative implementation. In the case of recursive implementation,

O(Logn) recursion call stack space.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/binary-search/
https://www.youtube.com/watch?v=P3YID7liBug

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/binary-search/
https://www.youtube.com/watch?v=P3YID7liBug

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Sorting - Bubble sort

Introduction :
 A Sorting Algorithm is used to rearrange a given array or list elements according to a comparison

operator on the elements. The comparison operator is used to decide the new order of element in the

respective data structure.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Sorting

 List

Detailed content of the Lecture:

 A Sorting Algorithm is used to rearrange a given array or list elements according to a comparison

operator on the elements. The comparison operator is used to decide the new order of element in

the respective data structure.

For example:

 The below list of characters is sorted in increasing order of their ASCII values. That is, the

character with lesser ASCII value will be placed first than the character with higher ASCII value.

Bubble Sort

 Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent

elements if they are in wrong order.

Example:

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 >

1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does

L - 39

LECTURE HANDOUTS
 II/III AI & DS

not swap them.

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm

needs one whole pass without any swap to know it is sorted.

Third Pass:

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Worst and Average Case Time Complexity:

 O(n*n). Worst case occurs when array is reverse sorted.

Best Case Time Complexity:

O(n). Best case occurs when array is already sorted.

AuxiliarySpace: O(1)

Boundary Cases:

Bubble sort takes minimum time (Order of n) when elements are already sorted.

SortingInPlace: Yes

Stable: Yes

Due to its simplicity, bubble sort is often used to introduce the concept of a sorting algorithm.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/bubble-sort/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/bubble-sort/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Selection sort - Insertion sort - Merge sort

Introduction :
 The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering

ascending order) from unsorted part and putting it at the beginning. The algorithm maintains two

subarrays in a given array.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Sorting

 List

Detailed content of the Lecture:

Selection sort

 The selection sort algorithm sorts an array by repeatedly finding the minimum element

(considering ascending order) from unsorted part and putting it at the beginning. The algorithm

maintains two subarrays in a given array.

1) The subarray which is already sorted.

2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order) from the

unsorted subarray is picked and moved to the sorted subarray.

Time Complexity of InsertionSort

 Best Case : O(n²) #Means array is already sorted.

 Average Case : O(n²) #Means array with random numbers.

 Worst Case : O(n²) #Means array with descending order.

L - 40

LECTURE HANDOUTS
 II/III AI & DS

arr[] = 64 25 12 22 11

// Find the minimum element in arr[0...4]

// and place it at beginning

11 25 12 22 64

// Find the minimum element in arr[1...4]

// and place it at beginning of arr[1...4]

11 12 25 22 64

// Find the minimum element in arr[2...4]

// and place it at beginning of arr[2...4]

11 12 22 25 64

// Find the minimum element in arr[3...4]

// and place it at beginning of arr[3...4]

11 12 22 25 64

Insertion Sort:

 Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards

in your hands. The array is virtually split into a sorted and an unsorted part. Values from the

unsorted part are picked and placed at the correct position in the sorted part.

 Algorithm

To sort an array of size n in ascending order:

1: Iterate from arr[1] to arr[n] over the array.

2: Compare the current element (key) to its predecessor.

3: If the key element is smaller than its predecessor, compare it to the elements before. Move the

greater elements one position up to make space for the swapped element.

Time Complexity of InsertionSort

 Best Case : O(n) #Means array is already sorted.

 Average Case : O(n²) #Means array with random numbers.

 Worst Case : O(n²) #Means array with descending order.

Example:

Let us sort the following numbers using Insertion sort mechanism,

12, 11, 13, 5, 15

Let us loop for i = 1 (second element of the array) to 4 (last element of the array)

i = 1. Since 11 is smaller than 12, move 12 and insert 11 before 12

11, 12, 13, 5, 15

i = 2. 13 will remain at its position as all elements in A[0..I-1] are smaller than 13

11, 12, 13, 5, 15

i = 3. 5 will move to the beginning and all other elements from 11 to 13 will move one position ahead of

their current position.

5, 11, 12, 13, 15

i = 4. 15 will be at position 5 as all the elements are smaller than 15.

5, 11, 12, 13,15

Merge Sort:

 One of the best sorting technique. If n value is large, it follows divide and conquer approach.

 Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides input array in two

halves, calls itself for the two halves and then merges the two sorted halves. The merge()

function is used for merging two halves.

Time Complexity :

 Best Case : O(nlogn) #Means array is already sorted.

 Average Case : O(nlogn) #Means array with random numbers.

 Worst Case : O(nlogn) #Means array with descending order.

Algorithm:

1. Find the middle point to divide the array into two halves:

 middle m = (l+r)/2

2. Call mergeSort for first half:

 Call mergeSort(arr, l, m)

3. Call mergeSort for second half:

 Call mergeSort(arr, m+1, r)

4. Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, r)

Example:

Let us take an array of elements 16,75,19,12,33,2,310,45,54

Partition Mechanism :

https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

Merging Mechanism:

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/insertion-sort/
https://www.geeksforgeeks.org/merge-sort/
https://www.geeksforgeeks.org/selection-sort/

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/insertion-sort/
https://www.geeksforgeeks.org/merge-sort/
https://www.geeksforgeeks.org/selection-sort/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Hashing - Hash Functions

Introduction :
 A hash algorithm is a function that converts a data string into a numeric string output of fixed

length. The output string is generally much smaller than the original data. ... Two of the most

common hash algorithms are the MD5 (Message-Digest algorithm 5) and the SHA-1 (Secure Hash

Algorithm).

Prerequisite knowledge for Complete understanding and learning of Topic:

 Conversion of String

 Data Conversion

Detailed content of the Lecture:

 Hashing is a technique or process of mapping keys, values into the hash table by using a hash

function. It is done for faster access to elements. The efficiency of mapping depends on the

efficiency of the hash function used.

 Let a hash function H(x) maps the value at the index x%10 in an Array. For example if the list

of values is [11,12,13,14,15] it will be stored at positions {1,2,3,4,5} in the array or Hash table

respectively.

Suppose we want to design a system for storing employee records keyed using phone numbers. And

we want following queries to be performed efficiently:

1. Insert a phone number and corresponding information.

L - 41

LECTURE HANDOUTS
 II/III AI & DS

2. Search a phone number and fetch the information.

3. Delete a phone number and related information.

We can think of using the following data structures to maintain information about different phone

numbers.

1. Array of phone numbers and records.

2. Linked List of phone numbers and records.

3. Balanced binary search tree with phone numbers as keys.

4. Direct Access Table.

 For arrays and linked lists, we need to search in a linear fashion, which can be costly in

practice. If we use arrays and keep the data sorted, then a phone number can be searched in

O(Logn) time using Binary Search, but insert and delete operations become costly as we have

to maintain sorted order.

 With balanced binary search tree, we get moderate search, insert and delete times. All of

these operations can be guaranteed to be in O(Logn) time.

 Another solution that one can think of is to use a direct access table where we make a big array

and use phone numbers as index in the array.

 An entry in array is NIL if phone number is not present, else the array entry stores pointer to

records corresponding to phone number.

 Time complexity wise this solution is the best among all, we can do all operations in O(1) time.

 For example to insert a phone number, we create a record with details of given phone number,

use phone number as index and store the pointer to the created record in table.

This solution has many practical limitations.

 First problem with this solution is extra space required is huge.

 For example if phone number is n digits, we need O(m * 10n) space for table where m is size

of a pointer to record.

 Another problem is an integer in a programming language may not store n digits.

Hash Table:

 An array that stores pointers to records corresponding to a given phone number. An entry in

hash table is NIL if no existing phone number has hash function value equal to the index for

the entry.

Collision Handling:

 Since a hash function gets us a small number for a big key, there is possibility that two keys

result in same value. The situation where a newly inserted key maps to an already occupied slot

in hash table is called collision and must be handled using some collision handling technique.

Following are the ways to handle collisions:

 Chaining:
 The idea is to make each cell of hash table point to a linked list of records that have same hash

function value. Chaining is simple, but requires additional memory outside the table.

 Open Addressing:

 In open addressing, all elements are stored in the hash table itself. Each table entry contains

either a record or NIL. When searching for an element, we examine the table slots one by one

until the desired element is found or it is clear that the element is not in the table.

http://en.wikipedia.org/wiki/Hash_table

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/hashing-data-structure/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/hashing-data-structure/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Separate Chaining - Open Addressing

Introduction :
 Cache performance of chaining is not good as keys are stored using linked list.
 Open addressing provides better cache performance as everything is stored in the same table.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Linked List

 Sorting

Detailed content of the Lecture:

Open Addressing

 Like separate chaining, open addressing is a method for handling collisions. In Open

Addressing, all elements are stored in the hash table itself. So at any point, the size of the table

must be greater than or equal to the total number of keys (Note that we can increase table size

by copying old data if needed).

Insert(k):

 Keep probing until an empty slot is found. Once an empty slot is found, insert k.

Search(k):

 Keep probing until slot’s key doesn’t become equal to k or an empty slot is reached.

Delete(k):

 Delete operation is interesting. If we simply delete a key, then the search may fail. So slots

of deleted keys are marked specially as “deleted”. The insert can insert an item in a deleted

slot, but the search doesn’t stop at a deleted slot.

Open Addressing is done in the following ways:

a) Linear Probing:

 In linear probing, we linearly probe for next slot. For example, the typical gap

between two probes is 1 as seen in the example below.

Let hash(x) be the slot index computed using a hash function and S be the table size

L - 42

LECTURE HANDOUTS
 II/III AI & DS

If slot hash(x) % S is full, then we try (hash(x) + 1) % S

If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S

If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

..

..

Let us consider a simple hash function as “key mod 7” and a sequence of keys as 50, 700, 76, 85, 92,

73, 101.

Challenges in Linear Probing :

1. Primary Clustering:

 One of the problems with linear probing is Primary clustering, many consecutive elements

form groups and it starts taking time to find a free slot or to search for an element.

2. Secondary Clustering:

 Secondary clustering is less severe, two records only have the same collision chain

(Probe Sequence) if their initial position is the same.

b) Quadratic Probing

 We look for i2‘th slot in i’th iteration.

let hash(x) be the slot index computed using hash function.

If slot hash(x) % S is full, then we try (hash(x) + 1*1) % S

If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S

If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

c) Double Hashing

 We use another hash function hash2(x) and look for i*hash2(x) slot in i’th rotation.

let hash(x) be the slot index computed using hash function.

If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S

If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S

https://www.geeksforgeeks.org/double-hashing/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2015/08/openAddressing1.png

If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

S.No. Separate Chaining Open Addressing

1. Chaining is Simpler to implement.

Open Addressing requires more

computation.

2.

In chaining, Hash table never fills up, we can

always add more elements to chain.

In open addressing, table may become

full.

3.

Chaining is Less sensitive to the hash

function or load factors.

Open addressing requires extra care to

avoid clustering and load factor.

4.

Chaining is mostly used when it is unknown

how many and how frequently keys may be

inserted or deleted.

Open addressing is used when the

frequency and number of keys is known.

5.

Cache performance of chaining is not good

as keys are stored using linked list.

Open addressing provides better cache

performance as everything is stored in

the same table.

6.

Wastage of Space (Some Parts of hash table

in chaining are never used).

In Open addressing, a slot can be used

even if an input doesn’t map to it.

7. Chaining uses extra space for links. No links in Open addressing

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/hashing-set-3-open-addressing/

Important Books/Journals for further learning including the page nos.:

Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/hashing-set-3-open-addressing/

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Rehashing - Extendible Hashing

Introduction :
 Extendible Hashing is a dynamic hashing method wherein directories, and buckets are used to

hash data. It is an aggressively flexible method in which the hash function also experiences

dynamic changes.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Hash Function

 Buckets

 Directories

Detailed content of the Lecture:

 Main features of Extendible Hashing:

The main features in this hashing technique are:

 Directories: The directories store addresses of the buckets in pointers. An id is assigned to each

directory which may change each time when Directory Expansion takes place.

 Buckets: The buckets are used to hash the actual data.

Basic Structure of Extendible Hashing:

L - 43

LECTURE HANDOUTS
 II/III AI & DS

Frequently used terms in Extendible Hashing:

 Directories: These containers store pointers to buckets. Each directory is given a unique id which

may change each time when expansion takes place. The hash function returns this directory id

which is used to navigate to the appropriate bucket. Number of Directories = 2^Global Depth.

 Buckets: They store the hashed keys. Directories point to buckets. A bucket may contain more

than one pointers to it if its local depth is less than the global depth.

 Global Depth: It is associated with the Directories. They denote the number of bits which are used

by the hash function to categorize the keys. Global Depth = Number of bits in directory id.

 Local Depth: It is the same as that of Global Depth except for the fact that Local Depth is

associated with the buckets and not the directories. Local depth in accordance with the global depth

is used to decide the action that to be performed in case an overflow occurs. Local Depth is always

less than or equal to the Global Depth.

 Bucket Splitting: When the number of elements in a bucket exceeds a particular size, then the

bucket is split into two parts.

 Directory Expansion: Directory Expansion Takes place when a bucket overflows. Directory

Expansion is performed when the local depth of the overflowing bucket is equal to the global depth.

Video Content / Details of website for further learning (if any):

https://www.geeksforgeeks.org/extendible-hashing-dynamic

Important Books/Journals for further learning including the page nos.:
Mark Allen Weiss, Data structure and Algorithm Analysis in C++, Pearson India,2012, page nos: 379

 Course Faculty

 Verified by HoD

https://www.geeksforgeeks.org/extendible-hashing-dynamic

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: File Storage Concepts : Sequential Access Method (SAM)

Introduction :
 Sequential access memory (SAM) is a class of data storage devices that read stored data in a

sequence. This is in contrast to random access memory (RAM) where data can be accessed in any

order. Sequential access devices are usually a form of magnetic storage or optical storage.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Files

 RAM

 Storage

Detailed content of the Lecture:

File Storage Concepts

A file is a sequence of records. File organization refers to physical layout or a structure of record occurrences in a

file. File organization determines the way records are stored and accessed.

In many cases, all records in a file are of the same record type. If every record in the file has exactly the same

size (in bytes), the file is said to be made of fixed-length records. If different records in the file have different

sizes, the file is said to be made up of variable-length records. A file may have variable-length records for

several reasons :

i) The file records are of the same record type, but one or more fields are of varying sizes (variable-

length fields).

ii) The file records are of the same record type but one or more fields may have multiple values for individual

records. Such a field is called repeating field and a group of values for the field is often called a repeating

group.

iii) The file records are of the same record type, but one or more fields are optional.

iv) The file has records of different record types and hence of varying size (mixed file). This would occur if

related records of different types were clustered (placed together) on disk blocks.

Sequential Access Method (SAM)

 In sequential files, the records are stored in a predefined order.

 Records which occur in a sequential file are usually sorted on the primary key and physically arranged on

the storage medium in order by primary key.

L - 44

LECTURE HANDOUTS
 II/III AI & DS

 If only sequential access is required (which is rarely the case), sequential media (magnetic tapes) are

suitable and probably the most cost-effective way of processing such files.

 Direct access devices such as disks may be but are not necessarily, referenced sequentially. Some

types of processing are best done through sequential access, even when direct access devices are used.

 Sequential access is fast and efficient while dealing with large volumes of data that need to be processed

periodically. However, it is require that all new transactions be sorted into a proper sequence for

sequential access processing. Also, most of the database or file may have to be searched to locate, store,

or modify even a small number of data records. Thus, this method is too slow to handle applications

requiring immediate updating or responses.

 Sequential files are generally used for backup or transporting data to a different system. A sequential

ASCII file is a popular export/import format that most database systems support.

Video Content / Details of website for further learning (if any):

http://egyankosh.ac.in/bitstream/123456789/25571/1/Unit-8.pdf

Important Books/Journals for further learning including the page nos.:

http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-
322%20DBMS.pdf

 Course Faculty

 Verified by HoD

http://egyankosh.ac.in/bitstream/123456789/25571/1/Unit-8.pdf
http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-322%20DBMS.pdf
http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-322%20DBMS.pdf

MUTHAYAMMAL ENGINEERING COLLEGE
 (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Course Name with Code : 19ADC01-Data Structures and Files

Course Faculty : M.S.Soundarya

Unit : V-Searching,Sorting,Hashing And Files Date of Lecture:

Topic of Lecture: Indexed Sequential Access Method (ISAM) – Direct Access Method (DAM)

Introduction :

 A file is a sequence of records. File organization refers to physical layout or a structure of record

occurrences in a file. File organization determines the way records are stored and accessed.

Prerequisite knowledge for Complete understanding and learning of Topic:

 Files

 Organization

Detailed content of the Lecture:

Indexed Sequential Access Method (ISAM)

 In indexed sequential files, record occurrences are sorted and stored in order by primary key on a

direct access storage device.

 In addition, a separate table (or file) called an index is maintained on primary key values to give the

physical address of each record occurrence. This approach gives (almost) direct access to record

occurrences via the index table and sequential access via the way in which the records are laid out on the

storage medium.

 The physical address of a record given by the index file is also called a pointer. The pointer or address can

take many forms depending on the operating system and the database one is using.

 Today systems use virtual addresses instead of physical addresses. A virtual address could be based on

imaginary disk drive layout.

 The database refers to a base set of tracks and cylinders. The computer then maps these values into

actual storage locations. This arrangement is the basis for an approach known as the virtual sequential

access method (VSAM).

 Another common approach is to define a location in terms of its distance from the start of a file

(relative address). Virtual or relative addresses are always better than the physical address because of their

portability.

L - 45

LECTURE HANDOUTS
 II/III AI & DS

Address

In case a few records need to be processed quickly, the index is used to directly access the records needed.

However, when large numbers of records must be processed periodically, the sequential organization

provided by this method is used.

An illustration of access using index file is given in Fig. 2.8.

Fig. 2.8: Data access using index file

Direct Access Method (DAM)

 When using the direct access method, the record occurrences in a file do not have to be arranged in any

particular sequence on storage media.

 However, the computer must keep track of the storage location of each record using a variety of

direct organization methods so that data is retrieved when needed.

 New transactions data do not have to be sorted, and processing that requires immediate responses

or updating is easily handled.

In the direct access method, an alogrithm is used to compute the address of a record. The primary key value is

the input to the algorithm and the block address of the record is the output.

To implement the approach, a portion of the storage space is reserved for the file. This space should be large

enough to hold the file plus some allowance for growth. Then the algorithm that generates the appropriate

address for a given primary key is devised. The algorithm is commonly called hashing algorithm. The

process of converting primary key values into addresses is called key-to-address transformation.

More than one logical record usually fits into a block, so we may think of the reserved storage area as being

broken into record slots sequentially numbered from 1 to n. These sequential numbers are called relative

pointers or relative addresses, because they indicate the position of the record relative to the beginning of the

file.

The objective of the hashing algorithm is to generate relative addresses that disperse the records throughout the

reserved storage space in a random but uniform manner. The records can be retrieved very rapidly because the

address is computed rather than found through table look-up via indexes stored on a disk file.

A collision is said to occur if more than one record maps to the same block. Since one block usually holds

several records, collisions are only a problem when the number of records mapping to a block exceeds the

block’s capacity. To account for this event, most direct access methods support an overflow area for collisions

which is searched sequentially.

The hashed key approach is extremely fast since the key’s value is immediately converted into a storage

location, and data can be retrieved in one pass to the disk.

Data/Record

Address

Data file

Key Value Address/Pointer Index file

An illustration of direct access method using hashed key is given in

Direct access using hashed-key approach

Video Content / Details of website for further learning (if any):

http://egyankosh.ac.in/bitstream/123456789/25571/1/Unit-8.pdf

Important Books/Journals for further learning including the page nos.:
http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-
322%20DBMS.pdf

 Course Faculty

 Verified by HoD

http://egyankosh.ac.in/bitstream/123456789/25571/1/Unit-8.pdf
http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-322%20DBMS.pdf
http://www.tmv.edu.in/pdf/Distance_education/BCA%20Books/BCA%20III%20SEM/BCA-322%20DBMS.pdf

